Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Единицы измерения скалярные

Следует четко отличать векторные величины от скалярных, которые определяются только численным значением и не зависят от направления. Многие формулы и теоремы теряют всякое значение и смысл, если вместо векторных величин подразумевать скалярные и обратно. Примерами скалярных величин или, иначе, скаляров могут быть время, температура, масса, плотность, длина, площадь, объем и т. д. При выбранной единице измерения скалярная величина полностью определяется арифметическим или алгебраическим числом, например температура +10 или -24°С. Векторы, в отличие от скаляров, обозначают черточкой сверху над величиной. На рисунке вполне допустимо рядом с изображением век-  [c.7]


С этой целью будем рассматривать в числе основных единиц измерения основную единицу длины как вектор и вместо задания одной скалярной единицы измерения [L ] введем несколько независимых векторных основных единиц длины. Для трехмерного пространства имеем  [c.68]

Одна из наших основных целей — обосновать анализ размерностей с помощью постулатов, в которых явно используется упомянутая в 58 группа подобия положительных скалярных преобразований единиц измерения. Хотя постулаты будут формулироваться абстрактно, мы будем интерпретировать их при помощи простых примеров из гидромеханики, и, быть может, самым простым из них является следующий пример.  [c.120]

Мы можем рассматривать только величину вектора без учёта направления этого вектора выраженная в каких-нибудь единицах измерения, она представится арифметическим числом и будет скалярной величиной мы назовём величину вектора его модулем и будем обозначать модуль вектора тою же буквою, как и сам вектор но изо-И  [c.26]

Под. измерением понимают сравнение с однородной величиной, принятой за единицу. Всякая скалярная величина состоит из абсолютного числа, указывающего, сколько раз в ней содержится величина, принятая за единицу, и из наименования, или размерности. Такое же правило применяется и для абсолютной величины вектора. Все величины, встречаемые в механике, могут быть выведены по их размерности из трех главных, или основных, единиц. В технической системе мер такими единицами являются длина ( ), время (7") и сила (F или Р).  [c.225]

Для характеристики электрической цепи одной из основных величин является напряжение и — скалярная величина, равная работе, которая производится при перемещении единицы положительного электричества (одного кулона) между двумя точками цепи и = А/д. Единицей измерения напряжения служит вольт. Это напряжение между двумя точками цепи, когда при перемещении заряда в один кулон совершается работа в один джоуль.  [c.288]

Кинетическая энергия — величина скалярная. Единицей измерения является джоуль (1 Дж = 1 Н м).  [c.198]

Удельное объемное электрическое сопротивление р — величина. равная отношению модуля напряженности электрического поля к модулю плотности тока, скалярная для изотропного вещества и тензорная для анизотропного вещества (ПОСТ 19880-74) [9]. Эта величина позволяет оценить электрическое сопротивление материала при протекании через его объем постоянного тока. Для практических измерений часто используют дольную единицу Ом см. Величина р низкокачественных диэлектриков при нормальной температуре и влажности находится в пределах 10 ...10 Ом м, для высококачественных — в пределах до l0 ...10 Ом м.  [c.160]


Удельная объемная проводимость — величина, обратная удельному объемному сопротивлению. В соответствии с ГОСТ 19880-74 удельную объемную проводимость определяют как величину, равную отношению модуля плотности тока проводимости к модулю напряженности электрического поля, скалярную для изотропного вещества, тензорную для анизотропного вещества. Обозначается эта величина о, единица ее измерения См/м.  [c.160]

При теоретических исследованиях и рсшеиип практических задач теоретической механики встречаются величины двух видов скалярные и векторные. Скаляром называется величина, характеризующаяся при выбранной единице измерения только численным значением (например, температура, масса, энергия, моменты инерции и т. д.). Вектором называется величина, определяемая помимо измеряющего ее в определенпых единицах числа еще своим направлением в пространстве. Типичными примерами векторных величин являются сила, скорость точки, ускорение точки и т. д. Мы считаем необходимым напомнить читателю основные полоя ения векторной алгебры и векторного анализа, учитывая, что ряд положений векторного анализа, 1 спользуемых в настоящем учебнике, выходит за рамки обычных учебных программ и что применение векторного исчисления к изучению механических явлений упрощает исследование, делает его более естественным и наглядным.  [c.319]

Мерой движения является физическая величина, называемая энергией. Установив меру движения материи, можно сравнивать меладу собой в количественном отношении движения материи различных форм, подобно тому как при помощи меры инертности — массы — мы сравниваем между собой инертность различных по природе тел. Мера двнл<ения — энергия — является величиной скалярной. Можно установить и единицу измерения энергии. Тогда количественно движение данной формы описывается числом этих единиц.  [c.132]

СКАЛЯР (от лат, 5са1а — лестница). Величина, определяемая только числовым значением (числом и единицей измерения) без указания направления. Объем, масса, плотность являются скалярными величинами в отличие от векторных величин (сила, скорость, ускорение).  [c.110]

Всякое движение тел совершается в пространстве и во времени. Движение тел в пространстве рассматривается относительно произвольно выбранной системы координат, которая, в свою очередь, связана, с каким-либо телом, называемь1м телом отсчета. Тело отсчета и связанная с ним система координат называются системой отсчета. Пространство в механике рассматривается как трехмерное евклидово пространство. Все измерения в нем производятся на основании методов евклидовой геометрии. За единицу длины при измерении расстояний принимается одни метр. Время в механике считается универсальным, т. е. протекающим одинаково во всех системах отсчета. За единицу времени принимается одна секунда. Время является скалярной непрерывно меняющейся величиной. В задачах кинематики его принимают за независимое переменное. Все другие величины (расстояния, скорости и т. д.) рассматриваются как функции времени. В дальнейшем при изучении кинематики и динамики часто используются понятия момент времени / и промежуток времени А/ . Под моментом времени I будем понимать число единиц из.мерения времени 1 (напри.мер, секунд), прошедших от некоторого начального момента (начала отсчета времени), например, от начала движения. Про.нгжутком времени будем называть число единиц времени At = — П, отделяющих два каких-нибудь  [c.89]

Подход к проблеме управления безопасностью, основанный на системно-динамическом методе, представляет собой, по-видимому, едва ли не единственную возможность, позволяющую корректно сравнивать различные виды опасности друг с другом. Опасности, с которыми сталкивается человек, имеют различный характер, различны по своей направленности, неравномерно распределены в пространстве и во времени. В связи с этим при сравнении опасностей друг с другом встает трудно разрешимая задача выбора шкалы , которая позволяла бы проводить такое сравнение. Как правило, для решения этой задачи принимается предположение, что такая шкала имеет скалярный характер, т. е. единица ее измерения является однокомпонентной, в качестве такой единицы используется единица денежного эквивалента [10, 12]. Однако простейший анализ опасности, связанной с той или иной деятельностью, показывает, что приведенное выше предположение о скалярности шкалы для ее измерения в значительной степени упрощает реальную ситуацию. Этой шкале присуща высокая размерность, и единица ее измерения — вектор. В силу этого при сравнении различных опасностей встает задача о методе свертывания векторов, характеризующих опасность. При этом необходимо принять во внимание, что опасность проявляется лишь в условиях хозяйственной деятельности населения. Эта деятельность представляет собой сложную систему, которая имеет иерархическую структуру с наличием большого числа обратных связей между ее отдельными элементами. Поэтому естественно, что проблема оценки того или иного вида опасности или сравнение различных видов опасности сводится к оценке характера изменения указанной системы в условиях опасности. При этом необходимо учесть не только большое число многоуровневых взаимодействий в системе, но и динамический характер ее развития. Системно-динамический метод фактически и является тем математическим аппаратом, который позволяет проводить сравнение опасностей, характеризующихся разнородными компонентами, т. е. проводить свертку вектора.  [c.93]


Время является скалярной непрерывно изменяюш,ейся величиной. Отсчет времени ведется от некоторого начального момента, выбор которого в каждом случае устанавливается. Всякий данный момент времени (Т) определяется числом единиц времени, нрошедпшх от начального момента до данного. Для измерения времени используют астрономические методы, в основе которых лежат явления, связанные с движением небесных светил. Измерение времени основано на обращении Земли вокруг Солнца, и вращении ее вокруг своей оси.  [c.32]


Смотреть страницы где упоминается термин Единицы измерения скалярные : [c.19]    [c.148]    [c.105]    [c.253]   
Моделирование в задачах механики элементов конструкций (БР) (1990) -- [ c.68 ]



ПОИСК



224 — Единицы измерени

Единицы измерения



© 2025 Mash-xxl.info Реклама на сайте