Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Структура металлических и неметаллических элементов

I Кристаллическая структура металлических и некоторых неметаллических элементов  [c.571]

Регулирование фазового состава сталей. Реальные стали являются гетерогенными системами, содержащими в твердом растворе — металлической матрице — посторонние фазы (так называемые избыточные фазы и неметаллические включения). Избыточные фазы (к ним относят карбиды, нитриды, силициды, бориды) и неметаллические включения (оксиды и сульфиды) образуются в результате взаимодействия примесных и легирующих элементов сталей и отличаются от металлической матрицы химическим составом, кристаллической структурой и электрохимическими характеристиками. Несмотря на относительно небольшое количество (от сотых до десятитысячных долей масс.%) посторонние фазы вносят свой вклад в интегральную скорость анодного и катодного процессов и характер растворения металла.  [c.190]


Эта группа представляет собой ограниченный случай общей группы систем с кривыми ликвидус, имеющими перегиб, Мы располагаем малым количеством сведений о прямых экспериментах по любому виду металлических систем с интервалом несмешиваемости, но из информации по неметаллическим системам можно сделать кое-какие выводы о структуре. В однофазных жидкостях при температурах чуть выше критической температуры и, возможно, при температурах вдоль критической кривой можно обнаружить комплексообразование. Интервал несмешиваемости обычно ограничивается двумя эвтектиками, структура которых, если модель, предложенная в разделе 8.3, верна, должна находиться в равновесии с областью несмешиваемости. В дальнейшем будут иметь значение исследования почти всех аспектов проблемы этих жидкостей. В жидких элементах с аномальной структурой (галлии, германии, кремнии и др.) связь должна быть в какой-то мере гомеополярной и, очевидно, ее вовсе не могут разрушить определенные растворенные элементы (например, d в Ga) и только с большим трудом разрушают другие (А1—Ge, In—Ge и др.). В таких случаях средний размерный фактор может помочь решить дело в пользу несмешиваемости. Тенденция к несмешиваемости, проявляемая алюминием (например, в сплавах А1—Sn, А1— d, Л1—In), кажется, не имеет логического объяснения в настоящее время, так как эта жидкость структурно нормальна возможно, в жидком алюминии образуются S—р-гибридные связи.  [c.173]

Для взаимодействия легких элементов — углерода, азота, кислорода, бора с переходными металлами [91—931 характерно образование твердых растворов внедрения легких элементов в металле, отсутствие растворимости металлов в этих неметаллических элементах и возникновение тугоплавких промежуточных фаз, имеющих, как правило, при характерной ионной структуре типа Na l доминирующий ковалентный тип связи с некоторой металлической компонентой. Природа межатомных связей в карбидах, нитридах, окислах, боридах переходных металлов и характер взаимодействия углерода, азота, кислорода и бора с атомами металла в твердых растворах внедрения подвергались широкому обсуждению, причем установлены принципиальные различия между соединениями и твердыми растворами, образуемыми легкими элементами, однако иногда без достаточных оснований эти соединения и растворы отождествляют, называя фазами внедрения [92[.  [c.81]

Многослойные конструкции состоят из двух или нескольких разнородных материалов, степень анизотропии которых может быть разной. Примерами двухслойных конструкций служат пропитанное связующим стекловолокно (ортотропная среда), намотанное на металлическую оправку (изотропная среда) изолирующее покрытие на металлическом объекте. Пример трейслойной конструкции — панель, состоящая из двух плотных обшивок, между которыми расположен малопрочный легковесный заполнитель, например пенопласт, пороматериал, сотовая структура (структура в форме пчелиных сот из металлической фольги, стеклопласта, бумаги). Слои, в которые входят неметаллические элементы, соединяют путем склейки, а металлические — путем склейки или пайки.  [c.219]


Кроме этих 9 Ф. (чистых элементов) имеется огромное число ферромагн. сплавов и соединений, как бинарных, так и более сложных (многокомпонентных) металлических и неметаллических (полупроводниковых, полуметаллич., диэлектрич., сверхпроводящих), кристаллических и аморфных. Классификацию Ф.—сплавов и соединений металлич. типа можно провести, напр., по электронной структуре атомов (ионов) их компонент.  [c.299]

При увеличении длительности работы питтинга возможно появление предельного тока (например, при потенциале д) вследствие диффузионного ограничения доставки в глубокий питтинг компонентов раствора и отвода продуктов реакции, и тогда анодная кривая вырождается в кривую Е Е Е, — что отмечалось при исследовании модельного питтинга [41, с. 77 71]. При потенциале коррозии Е , задаваемом окислительными свойствами среды (в условиях питтингообразования к более положительный, чем пт) происходит возникновение питтинга в результате взаимодействия адсорбированных активирующих анионов, например, хлор-ионов с пассивной пленкой в отдельных точках. Локальность процесса обусловлена негомогенностью поверхности металла и оксидной пленки и связанной с этим неравномерностью адсорбции анионов на пассивной пленке. Начальной стадии возникновения питтинга соответствует растворение структурных элементов поверхности, имеющих менее совершенную пассивацию. Несовершенство пассивной пленки может быть связано с каким-либо искажением структуры металла наличием границ зерен, различного рода включениями (металлическими и неметаллическими), выходом на поверхность кристаллов с менее благоприятной для пассивации ориентацией или же более тонкой неоднородностью, как, например, наличием дислокаций и включением в решетку инородных атомов. Местные изменения стойкости пассивной пленки могут быть вызваны также понижением концентрации основного пассивирующего компонента (например, хрома в коррозионностойких сталях), или дополнительных легирующих компонентов (Si, Мо и т. п.). На этой стадии отсутствуют заметные концентрационные изменения электролита и омические падения потенциала. Питтинг еще не имеет характерной полусферической формы, определяемой этими параметрами.  [c.91]

Кажется, что возможность нахождения асимметричного максимума в элементах из более высоких групп и низких периодов Периодической системы выше в этих элементах связь в твердом состоянии преимущественно неметаллическая [47]. Все это наводит на мысль, что такое поведение связано с сохранением в жидком состоянии определенной доли ковалентной или гомеополярной связи. Эта связь, возможно, присутствует в виде кратковременной локализации валентных электронов в связанном состоянии между парами или группами соседних атомов, возможно, в процессе резонансной гибридизации как рассматривалось Полингом [48]. Получающаяся в результате этого структура становится устойчивее за счет относительной стабильности и направленности неполярной связи. Эта преимущественно ковалентно связанная структура может существовать небольшими комплексами или островками в металлически связанной матрице . Если это так, то пространственное расположение атомов в пределах самих комплексов, возможно, будет одинаково, но совершенно отлично от более неупорядоченного расположения атомов в металлической матрице (к сожалению, невозможно определить пространственное расположение атохмов из данных по рентгеновскому рассеянию).  [c.22]

Структура NiAs наблюдается у важной группы соединений, образованных главным образом переходными металлами с элементами подгрупп IIIB — VIB. Хорошо известно, что элементы подгрупп IVB — VIB по своему характеру и типу образуемых ими связей являются электроотрицательными. Поэтому по своим свойствам они будут промежуточными между неметаллическими (ковалентными или ионными) и металлическими веществами.  [c.269]

Отличительные особенности работы фрикционных пар трения связаны с большим теплообразованием и значительным повышением температуры поверхностных слоев трущихся элементов. В этих условиях процесс окисления поверхностных слоев достаточно активизирован в результате пластической деформации и при относительно високих температурах идет чрезвычайно интенсивно. Образующиеся пленки вторичных структур предельно na bffltenbi кислородом, имеют большую толщину, обладают малой прочностью и плохо связаны с основным материалом. Процесс образования окислов при трении фрикционных материалов способствует интенсивному разрушению и приводит к развитию в поверхностных слоях трущихся элементов нежелательных явлений — обезуглероживания, выгорания. Следовательно, окислительные процессы в этом случае не могут нормализовать процесс трения. В связи с этим в существующих фрикционных устройствах металлические элементы фрикционной пары сочетаются с неметаллическими, используются материалы, не обладающие склонностью к окислению, в результате чего образуются вторичные структуры некислородного происхождения.  [c.156]



Смотреть страницы где упоминается термин Структура металлических и неметаллических элементов : [c.40]    [c.163]    [c.165]    [c.86]   
Металловедение и термическая обработка стали Т1 (1983) -- [ c.99 ]



ПОИСК



Неметаллические Структура

Структура металлическая

Структура элементов,

Шта неметаллические



© 2025 Mash-xxl.info Реклама на сайте