Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Микроанализаторы локальность

Локальность рентгеноспектрального микроанализатора,  [c.498]

В принципе возможно получение твердого раствора с концентрацией, превышающей максимальный предел равновесной растворимости. Однако подобное пересыщение твердых растворов в сплавах систем Al-Si, Al-Mg и других возможно только при сверхвысоких скоростях охлаждения в процессе кристаллизации. При литье в кокиль, предварительно подогретый до 200—250 °С, указанное пересыщение практически исключено, так как скорость охлаждения при этом сравнительно невысока. Диаметр области возбуждения рентгеновского излучения во-время исследования составлял 2—3 мкм. Локальность анализа за счет взаимодействия электронов с веществом по поверхности и глубине не превышала 5 мкм. Чувствительность прибора данного класса 10 —10 г [40 при точности 1—4 %, зависящей от определяемой концентрации. Дальнейшую обработку результатов измерений проводили на ЭВМ, входящей в состав микроанализатора.  [c.33]


Для определения химического анализа на элементы от В до U (кроме кислорода и фтора) в микрообъемах (3—10 мкм ) различных объектов, как металлических, так и неметаллических, применяется микроанализатор МАР-2 (рис. 47). Основной принцип работы заключается в том, что поток электронов, созданный электронной пушкой и имеющий определенную длину волны взаимодействия с микрообъемами поверхности объекта, вызывает характеристическое рентгеновское излучение. Его длина волны свойственна только одному определенному элементу, входящему в состав того или иного локального участка объекта. Измеряя интенсивность характеристического излучения и сравнивая ее с интенсивностью излучения от эталона, имеющего известное содержание этого же элемента, можно рассчитать его концентрацию в изучаемом объекте.  [c.84]

Основными методами исследования строения кристаллических веществ служат рентгенофазовый и рентгеноструктурный анализ [85, 88—91]. Особую ценность для изучения структуры имеют исследования с помощью рентгеновского микроанализатора (МАР-1). Последний предназначен для определения методом локального рентгеноспектрального анализа количественного химического состава в микрообъемах площадью 1—2 мкм ..  [c.46]

Метод микрорентгеноспектрального анализа основан на том, что пучок электронов с большой энергией фокусируется системой электромагнитных линз до микронного диаметра и направляется на выбранный участок образца, поверхность которого наблюдается под оптическим микроскопом при увеличении 400— 600. Попадая на образец, электроны возбуждают в анализируемом участке рентгеновское излучение, которое разлагается системой кристаллов в спектр и регистрируется счетчиками. По длине волны и интенсивности.рентгеновского излучения производится качественный и количественный анализы. Чувствительность метода различна для различных элементов. Точность количественного анализа зависит от условий возбуждения излучения и химического состава объекта, так как зависимость интенсивности от концентрации нелинейная. Для точных количественных измерений нужны эталоны, использование которых дает точность до 5 % без эталонов точность 10—15%. В настоящее время применяются серийные отечественные установки МАР-2, французские, английские, японские микроанализаторы. Они позволяют производить анализ элементов от магния до урана при локальности 2—5 мкм. Проектируются установки, которые будут анализировать бор, азот и др. Почти все микроанализаторы снабжены сканирующим устройством, поэтому одновременно можно производить анализ элементов в точке и получать топографическую картину распределения элементов в нескольких характеристических излучениях, а также в отраженных и поглощенных электронах. Метод микрорентгеноспектрального анализа обладает широкими возможностями для анализа структуры и состава переходной зоны. Принципиальным преимуществом этого метода является возможность с наивысшей пока степенью локальности изучать переходную зону многокомпонентных систем.  [c.35]


Современные приборы, управляемые мини-ЭВМ, объединяют в себе достоинства растровых электронных микроскопов высокого разрешения (до Юнм) и рентгеноспектрального микроанализатора с локальностью до 0,5 мкм. Оптический микроскоп анализатора (увел. 400) позволяет выбрать любую точку или участок, а таюке любое направление в исследуемом объекте, где желательно определить состав или проследить распределение интересующего элемента.  [c.252]

Исследование покрытия № 4 методом локального рентгеноспектрального анализа на микроанализаторе Камека позволило представить качественную картину распределения элементов в переходном слое и в зоне покрытия (рис. 3). На концентрационных кривых распределения элементов в покрытии обнаружены желеэо и кремний, которых нет в составе жаростойкого сплава системы Ni—Сг—А1. Это обстоятельство указывает на то, что и в случае синтезирования покрытий методом адсорбционно-физического отложения выбор состава матрицы играет важную роль [1, 6].  [c.147]

Рентгеновский микроанализ (локальный анализ) участков пробы 1—-3 мкм выполняют с помощью электронного зонда в микроанализаторе. Электронный зонд формируют с помощью электростатич. и магн. фокусировки до сечения диам. 1 мкм. Анализ осуществляют по рентг. излучению образца, к-рое разлагают в спектр с помощью рентг. спектрометра, В этой методе вводят поправки на Z определяемого элемента, поглощение его излучения в пробе и его флуоресценцию, возбуждаемую тормозной компонентой излучения и характеристич. излучениями др. элементов в пробе. Микроанализ применяют при исследованиях взаимной диффузии 2- и 3-компонентных систем, процессов кристаллизации, локальных флуктуациях состава сплавов и т. д.  [c.379]

Локальность РСМД, т. е. эффективный объем вещества, в котором возбуждается характеристическое рентгеновское излучение, определяется в первую очередь диаметром зонда на образце. При анализе монолитных образцов линейная локальность (диаметр пятна на образце) не может быть лучше 1—2 мкм. Это объясняется тем, что электроны успевают пройти в образце расстояние 1—3 мкм прежде, чем их энергия станет недостаточной для генерации характеристического рентгеновского излучения. Согласно Кастену эффективный размер пятна из-за рассеяния электронов определяется выражением 5 = 0,033( — где Ео и Ек, выраженные в кэВ, соответственно энергия падающих на образец электронов, определяемая заданным ускоряющим напряжением, и энергия возбуждения характеристического рентгеновского излучения элемента с атомным номером Z и атомной массой А- р — плотность образца. Размер пятна существенно зависит от энергии электронов. Так, для чистого алюминия ( и=1,5 кэВ) размер пятна равен 6 мкм при о = 30 кэВ и 1,5 мкм при о = Ю кэВ. Обычно работают при напряжениях в интервале 10—20 кВ. Нецелесообразно уменьшать диаметр зонда до величин, меньших 0,3—0,5 мкм, так как при заданном ускоряющем напряжении пучки меньшего диаметра из-за рассеяния электронов будут возбуждать рентгеновские лучи с той же эффективной площади образца. Количественный РСМД можно проводить при размерах фаз 5 мкм. Минимальный объем частиц в экстракционных репликах, которые удается анализировать на микрозонде, составляет 0,2— 0,3 мкм . На электронном микроскопе-микроанализаторе (ЭММА) в экстракционных репликах или в фольгах определялся состав равномерно распределенных частиц с минималь-  [c.146]

За последние годы в оптическом приборостроении в значительной степени возросла роль зеркальных и зеркально-линзовых систем в связи с развитием инфракрасной техники, высокотемпературной металлографии, растровых электронных микроскопов — микроанализаторов, микроскопов для микроспектрального локального анализа, ультрафиолетовой микроскопии и т. д.  [c.130]


Смотреть страницы где упоминается термин Микроанализаторы локальность : [c.457]    [c.99]    [c.353]    [c.6]    [c.703]   
Металловедение и термическая обработка стали Т1 (1983) -- [ c.145 ]



ПОИСК



Г локальный

К локальности

Микроанализаторы



© 2025 Mash-xxl.info Реклама на сайте