Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материалы В аэрокосмической технике

В результате местного усиления можно достигнуть снижения массы на 15—25%. Обычно для усиления какого-либо участка предварительно отвержденные полоски композиции наклеивают на фланцы крышки изделия. При этом достигается экономия расходов, так как сокращается общая потребность в композиции, упрощается его формовка и раскрой. Надежность возрастает, так как армирующие полоски имеют очень простую геометрию и изготовляются почти в идеальных условиях. Во многих случаях металлические детали конструируются исходя из допустимых напряжений выборочная армировка материала позволяет достигать в конструкции предельных напряжений. В связи с этим риск, связанный с использованием композиционных материалов, очень невелик. В конструкциях такого типа можно пользоваться обычными металлическими соединениями — сваркой либо клепкой. При этом надежность может быть существенно повышена вследствие значительного технологического опыта, приобретенного в части получения таких соединений в аэрокосмической технике. И, наконец, уменьшается риск срыва графика выпуска изделия. Если изделие, целиком изготовленное из композиционных материалов, не выдерживает приемные испытания, то переход на металлоконструкции может потребовать отсрочки несколько месяцев. Если же какая-либо деталь с местным усилием не проходит статические, циклические испытания или испытания на ползучесть, рабочий чертеж может быть легко переработан с целью увеличения сечения по металлу.  [c.103]


Применение композиционных материалов на основе углеродных волокон для изготовления спортивных изделий обусловлено снижением их массы благодаря превосходным механическим свойствам углепластиков. Объем высококачественных спортивных изделий из углепластиков, выпускаемых в Японии, превышает объем производства изделий из углепластиков, применяемых в аэрокосмической технике и в других отраслях промышленности. Для производства спортивных изделий используется около 70% всех углепластиков. В табл. 6.7 сопоставляется уровень потребности в углепластиках и прогноз ее удовлетворения в Японии и США. В табл. 6.8 перечислены выпускаемые в настоящее время спортивные изделия из углепластиков. В промышленном масштабе из углепластиков изготавливаются удилища, клюшки для игры в гольф и каркасы теннисных ракеток. На рис. 6.16 показана схема процесса формования цилиндрических О заготовок для удилищ, клюшек для игры в гольф и других трубчатых изделий.  [c.221]

Несмотря на то, что использование композитов в аэрокосмической технике занимает в настоящее время относительно малую долю от их общего объема потребления, композиционные материалы находят наиболее специфическое и эффектное применение именно в этой области. Сейчас можно сказать, что композиты стали реальностью в промышленности в качестве заменителей металлов лишь за последние 10 лет, а новые авиационные конструкции будут в обозримом будущем состоять минимум на 40 % из композитов.  [c.538]

В аэрокосмической технике требования обычно выше, чем в других областях применения, это относится к таким важным характеристикам, как малая масса, высокие прочность и жесткость и хорошая стойкость к усталостным напряжениям. Композиты, особенно с высокими эксплуатационными характеристиками, являются единственными существующими в настоящее время материалами, отвечающими данным требованиям. Удельная прочность при растяжении для углепластиков составляет около 9,2 X X 10 м по сравнению с 2- 0 м у алюминия. Удельный модуль упругости составляет 8,4- 10 м. Предел выносливости углеродных волокон составляет 80 % от статической прочности по сравнению с 35 % для алюминия.  [c.538]

Укладка непрерывных волокон в направлении действия силы позволяет полностью реализовать повышенные механические показатели таких материалов, как стекло, углерод, бор, которые в форме волокон относятся к наиболее прочным из известных материалов. Многие композиционные материалы, полученные таким способом, обладают очень высокими показателями, требуемыми, например, в аэрокосмической технике, где вопросы стоимости не являются первостепенными. Стеклопластики остаются важнейшими конструкционными композиционными материалами и находят чрезвычайно широкое применение в строительстве, судостроении (легком и тяжелом), самолето- и автомобилестроении, химической промышленности, в быту.  [c.108]


Стеклянные волокна в качестве армирующего наполнителя обладают двумя существенными недостатками — имеют низкую жесткость, что требует усиления элементов конструкций из стеклопластиков и препятствует полной реализации прочности волокон, и теряют прочность при контакте с водой. Углеродные и борные волокна значительно более жесткие, а поскольку по прочности они не уступают лучшим стеклянным волокнам, напряжения, которые выдерживают материалы на их основе, значительно выше, чем в случае стеклопластиков при меньших допустимых деформациях. Эти волокна, также как и стеклянные, производятся непрерывными способами и технология производства изделий из материалов на их основе только незначительно отличается от технологии изготовления изделий из стеклопластиков. Еще одним типом волокон, которые могут рассматриваться как серьезный конкурент перечисленным трем типам волокон, являются волокна из ароматических полиамидов типа Кевлар 49 фирмы Дюпон . Хотя эти волокна являются сравнительно новыми, они нашли широкое применение в производстве высоконагруженных элементов, в том числе в аэрокосмической технике в качестве самостоятельного армирующего наполнителя или в комбинации с другими волокнами, в частности углеродными, для производства гибридных материалов. Сравнительные свойства ряда важнейших типов армирующих волокон приведены в табл. 2.4.  [c.108]

Материалы, применяемые в аэрокосмической технике.  [c.525]

Конструкции и технология получения материалов были и остаются областью наибольшего интереса, направленного на совершенствование техники. С 1966 г. был достигнут существенный прогресс в использовании КУС. Этот прогресс будет продолжаться, и к 1990 г. промышленность производства КУС прочно утвердится в своих правах. Первоначальной отдачи от практического применения КМ следует ожидать от авиации, а затем от достижений в области аэрокосмической техники. Композиты совершат, по-видимому, значительное вторжение в область создания будущих источников энергии (солнечная энергия и энергия ядерного синтеза), подобно тому как они обеспечивают конструкционными материалами рост выпуска новых видов вертолетов.  [c.565]

Эффективное развитие современной техники немыслимо без использования новых материалов, обладающих различными, сложными комплексами физических свойств. Особое место среди этих материалов занимают магнитные и сверхпроводящие материалы, которые широко используются в электро- и радиотехнической, аэрокосмической и ядер-ной, электронной и приборостроительной отраслях промышленности, при создании новых ЭВМ и микропроцессоров.  [c.506]

Хотя сообщается [4], что первый серийный самолет типа Лок-хид Тристар , основные и вспомогательные элементы конструкции которого будут полностью изготовлены из композиционных материалов, не войдет в эксплуатацию раньше 1985 г., эти материалы уже сейчас находят широкое применение в производстве летательных аппаратов. Такие их элементы, как антенные обтекатели, уже давно производятся из радиопрозрачных полимерных композиционных материалов. Полимерные композиционные материалы широко применяются в производстве других элементов конструкций летательных аппаратов силового, олеративного и функционального назначения. Именно в аэрокосмической технике находят применение самые современные типы полимерных композиционных материалов, несмотря на их высокую стоимость, так как часто только они могут удовлетворить возникающим в этой области требованиям. Доклад, опубликованный в ФРГ [5], предсказывает все возрастающее применение композиционных материалов в конструкциях гражданских самолетов, в которых будут использоваться все виды современных армирующих волокон — стеклянные, угле-  [c.417]

Изучение тенденции развития полимерных композиционных материалов для аэрокосмической техники, а также экономических прогнозов по данным различных авторов и источников показывает хорошие перспективы роста производства этих материалов (рис. 11.1). Из приведенных на рис. 11.1 данных видно, что производство этих материалов к 90-м годам нашего столетия удвоится (по сравнению с 1975 г.). Ниже для сравнения приведены данные о потреблении стсклонаполпетилх полимеров в 1976 г. в США, Англии и других странах мира  [c.419]

Одним из решаюншх факторов прогресса современных ЛЛ является создание новых материалов и улучшение уже существующих. Применение в конструкции новых материалов, одновременно легких и чрезвычайно прочных, уменьшает массу корпуса, что позволяет снизить эксплуатационные расходы, увеличить полезный груз, скорость и дальность полета. Традиционно в аэрокосмической технике используются такие KOH TpyKunofi-ные материалы, как алюминий, сталь, титан, магний, бериллий. Сейчас наблюдается тепден щя к использованию материалов с еще лучшими характеристиками большей прочностью и меньшей плотностью. Этими свойствами особенно отличаются композиционные материалы.  [c.208]


Контроль качества является самой массовой технологической операцией в производстве, ибо ни одна деталь не может быть изготовлена без измерения ее технических характеристик. В связи с усложнением и требованием неуклонного повышения надежности новой техники трудоемкость контрольных операций в промышленности резко увеличивается. Так, например, в развитых капиталистических странах затраты на контроль качества составляют в среднем 1—3 % от стоимости выпускаемой продукции, а в таких отраслях промышленности, как оборонная, атомная, а также аэрокосмическая, затраты на контроль качества возрастают до 12—18% на контроль сварных соединений в судостроении расходуется 5 % общей стоимости проконтролированных узлов и материалов, в ракетостроении 20%, в строительстве жилых и промышленных многоэтажных зданий 1 —1,5%, в строительстве трубопроводов большого диаметра и большой протяженности 10 %, в котлостроенIIи 1—2%. Указанные затраты быстро окупаются, так как благодаря неразрушающему контролю на всех этапах изготовления и приемки радикально повышается качество продукции, увеличивается ее надежность, Так, например, срок окупаемости затрат на оборудование неразрушаю-  [c.8]

Композиты все более активно входят в жизнь и заменяют традиционные материалы в энергетике, средствах информации и связи, аэрокосмической технике, наземном транспорте, электронике и фотонике, медицине и других областях, что и определяет необходимость введения нового курса по физикохимии и технологии композитов в высшей технической школе. Еще более возрастет роль композиционных материалов в XXI в. Наука о композитах активно развивается. Исследователи  [c.4]

Пересмотрели и рациональную форму матрицы. Ранее для обработки материалов аэрокосмической техники в большинстве случаев пользовались матрицами прямоугольной или конической формы. В новой геометрии матрица приобрела обтекаемую форму, со сглаженным входом и выходом, в результате не возникали участки с резким изменением скорости движения металла. Обтекаемая матрица по всем своим napaMeTpaN способствует повышению производительности процесса, полезному выходу металла и повышает равномерность его качества. Профиль обтекаемой матрицы оптимизировали [7] пс результатам, полученным при математическом моделирование металлического потока.  [c.200]

Композиционные материалы с титановой матрицей являются перспективными жаропрочными материалами для авиакосмической техники и найдут применение в новых конструкциях реактивных двигателей, где возникает необходимость в материалах, вьщерживающих температуру эксплуатации до 800 °С. Использование композиционного материала позволяет значительно снизить массу конструкции, что крайне необходимо двд аэрокосмической техники. В настоящее время ведутся исследования по созданию из КМ деталей компрессора, например лопаток, турбин и др. К материалу матрицы жаропрочного КМ предъявляются следующие требования значительное сопротивление окислению, высокая прочность при повышенных температурах, удовлетворительная пластичность при комнатной температуре. Между материалом волокон и матрицей не должно происходить химического взаимодействия при повышенных температурах. В качестве матрицы жаропрочных КМ могут быть использованы псев-до-а-титановые сплавы, например сплав IMI834. В качестве упрочните-ля выступают волокна Si . Сплав IMI834, упрочненный волокнами Si (S S-6), предназначен для эксплуатации при температурах до 550 °С. При производстве данных КМ используются технологии магнетронного распыления и горячее изостатическое прессование. Для предотвращения химического взаимодействия при повышенной температуре волокна и матрицы используются защитные покрытия волокон и метод фазовой  [c.202]

Однако для определенных классов материалов, например для однонаправленных композиционных материалов и слоистых структур на их основе, теория и практика поднялись на более высокую ступень развития, главным образом под влиянием требований, предъявляемых аэрокосмической промышленностью, и растущего применения армированных пластиков в строительной технике в качестве резервуаров, труб и сосудов высокого давления.  [c.208]

Знание — проверенный практикой результат познания действительности, верное ее отражение в сознании человека. Научные знания поднимаются до уровня объяснения фактов, осмысления их в системе понятий данной науки, включаются в состав теорий. В на-учно-технической области объектами знаний являются продукция — изделия (машиностроения, аэрокосмической техники, легкой промышленности и т.п.), материалы (металлургической, текстильной промышленности и т.п.), продукты (химические, биологические и др.)  [c.18]

Композиционные материалы нашли широкое применение в различных отраслях современной техники. Дальнейший прогресс в развитии многих направлений машиностроения в болыпой степени связан с увеличением доли использования таких материалов, а при создании новой аэрокосмической и специальной техники их роль становится решающей. Требования оптимального проектирования, сокращения времени и материальных затрат на экспериментальную отработку определили значительный интерес к совершенствованию методов прогнозироваг ния деформационных и прочностных свойств композитов.  [c.7]

Бериллий обладает уникальным сочетанием лучших показателей физических н механических свойств. По удельной прочности, теплоемкости в жаропрочиостн ои также превосходит все другие металлы. Американские специалисты относят его к числу выдающихся аэрокосмических материалов. Одиако примеиеиие бериллия в технике сдерживают три недостатка хладноломкость, токсичность и высо-кан стоимость.  [c.24]


Смотреть страницы где упоминается термин Материалы В аэрокосмической технике : [c.13]    [c.4]    [c.539]    [c.14]    [c.187]    [c.106]    [c.11]    [c.279]   
Справочник по композиционным материалам Книга 2 (1988) -- [ c.565 ]



ПОИСК



Аэрокосмическая техника



© 2025 Mash-xxl.info Реклама на сайте