Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Потенциал кинетический сплошной среды (потенциал

Особое преимущество принципа Гамильтона обнаруживается в механике сплошных сред, поскольку этот принцип приводит не только к дифференциальным уравнениям задачи, но также и к краевым условиям, которым должны удовлетворять решения этих дифференциальных уравнений в частных производных. Во многих случаях необходимо вначале искать функцию Лагранжа L (входящую в выражение вариационного принципа) в зависимости от характера задачи. Это имеет место, например, при движении электрона в магнитном поле, когда действующая сила не имеет потенциала У далее — в теории относительности, когда L нельзя выразить с помощью выведенного нами выражения (4.10) для кинетической энергии. Здесь роль кинетической части принципа наименьшего действия играет выражение  [c.277]


Займемся теперь исследованием вопроса о переходе от микроскопического к макроскопическому уровню. В равновесной теории такая проблема была довольно просто разрешена, как это показано в гл. 4. Если микроскопическая равновесная функция распределения задана (как в случае канонического ансамбля), то можна построить величину, обладающую свойствами термодинамического потенциала, и выразить ее через характеристические параметры функции распределения. Таким образом, связь между микроскопической теорией и макроскопической термодинамикой устанавливается сразу. В неравновесной теории подобного простого способа не существует. Это обусловлено разнообразием неравновесных явлений и сложностью процессов эволюции. Поэтому для построения неравновесной теории необходимы более совершенные средства. В данной главе мы начнем построение неравновесной теории с вывода уравнений гидродинамики, которые являются типичными уравнениями макроскопической физики сплошных сред. Чтобы дать читателю обп1ую ориентировку, сначала изложим саму идею используемого метода, которая является весьма общей и применима ко всем кинетическим уравнениям.  [c.50]

Термин молекулярный диффузионный перенос охватывает явления диффузии, теплопроводности, термодиффузии и вязкости. Эти явления описываются некоторыми частями уравнений сохранения массы, количества движения и тепла, приведенных в предыдущем параграфе (см. уравнения (2.1.57)-(2.1.60)). В каждое из этих уравнений входит дивергенция потока некоторой величины, связанной, хотя бы и неявно, с градиентами термогидродинамических параметров (так называемыми термодинамическими силами). Существуют два способа получения линейных связей определяющга соотношений) между этими потоками и сопряженными им термодинамическими силами, основывающихся на макроскопическом (феноменологическом) и кинетическом подходах. Кинетический подход связан с решением системы обобщенных уравнений Больцмана для многокомпонентной газовой смеси и до конца разработан только для газов умеренной плотности, когда известен потенциал взаимодействия между элементарными частицами (см., например, Чепмен, Каулинг, 1960 Ферцигер, Капер, 1976 Маров, Колесниченко, 1987)). Феноменологический подход, основанный на применении законов механики сплошной среды и неравновесной термодинамики к макроскопическому объему смеси, не связан с постулированием конкретной микроскопической модели взаимодействия частиц и годится для широкого класса сред. В рамках феноменологического подхода явный вид кинетических коэффициентов (коэффициентов при градиентах термогидродинамических параметров в определяющих соотношениях) не расшифровывается, однако их физический смысл часто может быть выяснен (например, для разреженных газов) в рамках молекулярно-кинетической теории Маров, Колесниченко, 1987)  [c.85]



Курс теоретической механики. Т.2 (1977) -- [ c.0 ]



ПОИСК



Потенциал кинетический

Среда сплошная



© 2025 Mash-xxl.info Реклама на сайте