Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гидроксид

Чистая вода содержит ионы Н+ и ОН" в разных концентрациях, находящихся в равновесии с недиссоциированной водой (НдО Н+ + ОН"), поэтому можно рассчитать активность как водородного иона, так и гидроксид-иона, исходя из константы диссоциации, значение которой при 25 °С составляет 1,01.10" ,  [c.37]

Для гидрид-иона D = 9,3-10 , для гидроксид-иона — 5,2X X10 см с (бесконечное разбавление), поэтому соответствующие значения /др выше.  [c.52]

Заметим, что гидроксид и сульфид железа образуются в молярном соотношении 3 1. Анализ ржавчины, образовавшейся  [c.103]


Влияние pH аэрированной чистой (или мягкой ) воды на коррозию железа при комнатной температуры показано на рис. 6.3. Определенные значения pH достигались добавлением гидроксида натрия или соляной кислоты [8].  [c.105]

Диоксид углерода, присутствующий в окружающем воздухе или попадающий в раствор вследствие разложения растительных остатков, может реагировать с гидроксид-ионом с образованием бикарбонатов и карбонатов [17]  [c.187]

Р1з 33 3 но эти соединения на некотором расстоянии от катода при низких 2п. 65,38 значениях pH гидролизуются с образованием нерастворимых 26,98 2 оксидов или гидроксидов метал- лов.  [c.212]

Указанное уравнение выбрано для насыщенного водного раствора Fe(OH)a, pH которого составляет 9,5. Это значение, как показано в разд. 6.1.3, находится в интервале pH = 4-н10, который наблюдается на поверхности железа. Другие корродирующие металлы имеют иные характерные поверхностные значения pH, но то же соотношение 2 [М +] = [0Н ], а это приводит к тому, что наружный раствор не влияет на значение pH, обусловленное образованием поверхностного гидроксида металла. — Примеч. авт.  [c.226]

Причина изменения полярности, по-видимому, заключается в образовании непроводящ,их пористых осадков гидроксида цинка или основных солей цинка в условиях, когда цинк является анодом по отношению к железу, и в образовании оксида цинка, когда цинк является катодом [15]. Последнее соединение является полупроводником с электронной проводимостью. Следовательно, в аэрированной воде пленка ZnO может работать как кислородный элект-> род, чей потенциал, как и в случае прокатной окалины на стали, положителен по отношению к цинку и железу. Соответственно,  [c.237]

Для уменьшения содержания растворенного кислорода применяют специальные ионообменные смолы. Они содержат вещества, быстро реагирующие с кислородом, такие как сульфиты металлов, гидроксид железа (II), гидроксид марганца. Смолы можно регенерировать соответствующей химической обработкой. При лабораторных испытаниях смол, содержащих Fe(OH)j, Поттеру [71 в течение длительного времени удавалось снижать концентрацию кислорода в воде с 8,8 мг/л до менее, чем 0,002 мг/л.  [c.276]

Одно время для предупреждения КРН в котловой воде поддерживали определенное соотношение сульфата и гидроксида натрия. Однако это не предотвращало растрескивания при испытаниях с помощью индикатора хрупкости [22], и в настоящее время сульфаты Для этой цели большей частью не применяются. Первоначальные рекомендации об использовании сульфатов, по-видимому, были основаны на наблюдениях в Иллинойсе [44],  [c.291]

Имеются данные о межкристаллитной коррозии никелевого сплава с 15 % Сг и 6 % Fe -(инконель 600) в воде при 350 °С или паре при 600—650 °С [21], а также стабилизированной нержавеющей стали 18-8 в растворе гидроксида натрия (pH = И) при 280 °С [26]. Эти сведения представляют особый интерес ввиду широкого применения инконеля 600 и нержавеющих сталей в качестве конструкционных материалов для ядерных энергетических установок. Загрязнение воды следами растворенного кислорода, едким натром или свинцом (при протечке в трубных  [c.308]


Свинец — амфотерный металл, поэтому корродирует в щелочах с умеренной или большой скоростью, в зависимости от аэрации, температуры и концентрации растворов. Так, он разрушается при комнатной температуре растворами гидроксида кальция, а также водами, находившимися в контакте со свежим портландцементом.  [c.357]

В аэрированном гидроксиде аммония.  [c.360]

Так как монель стоек в быстро движущейся морской воде, его часто применяют при изготовлении деталей клапанов и водоотливных шахтных стволов. Из него изготавливают также промышленные емкости для горячей пресной воды и различное оборудование для химической промышленности. Он стоек в кипящих растворах серной кислоты при концентрациях ниже 20 %, скорость коррозии в этих условиях менее 0,20 мм/год (длительность испытаний 23 ч) [6]. Монель обладает очень высокой стойкостью в неаэрированных растворах HF любой концентрации вплоть до температуры кипения (в насыщенном азотом 35 % растворе HF при 120 °С скорость коррозии составляет 0,025 мм/год при насыщении воздухом — 3,8 мм/год) [7 ]. Сплав имеет высокую стойкость и в щелочах, за исключением горячих концентрированных растворов едкого натра или аэрированных растворов гидроксида аммония.  [c.363]

В результате в осадок выпадают кристаллы гидроксида алюминия А1 (ОН)з- Гидроксид алюминия обезвоживают во вращающихся ие-чах при температуре 1150—1200 °С и получают обезвоженный глинозем А1Юз.  [c.49]

Гидратированный оксид железа FeO-nHaO или гидроксид железа Ре(ОН)г образуют на поверхности, железа диффузионнобарьерный слой, через который должен диффундировать кислород. У раствора, насыщенного Fe(0H)2, pH л 9,5, так что на поверхности железа, корродирующего в аэрированной чистой воде, среда всегда щелочная. Чистый Ре(ОН)а имеет белый цвет, но обычно из-за начинающегося окисления кислородом воздуха цвет гидроксида варьирует от зеленого до черного. На внешней поверхности оксидной пленки, доступной растворенному кислороду, оксид железа (И) окисляется до оксида или гидроксида железа (III)  [c.100]

Влияние аэрации на подземную коррозию обобщено Романовым [7] В хорошо аэрируемых грунтах скорость питтингообра-зования быстро падает от высоких начальных значений, вследствие окисления железа и образования на поверхности металла гидроксида железа, обладающего защитными свойствами и снижающего скорость питтингообразования. С другой стороны, в плохо аэрируемых грунтах начальная скорость питтингообразования снижается очень медленно. В этом случае неокисленные продукты коррозии диффундируют вглубь почвы и практически НС защищают металл от дальнейшего разрушения. Агрессивность почвы влияет также на наклон кривой зависимости глубины пит-тинга от времени. Так, даже в грунтах с хорошей аэрацией избыточная концентрация растворимых солей будет препятствовать об-  [c.182]

Коррозионное растрескивание под напряжением (КРН) часто является причиной разрушения подземных газопроводов [12—18]. В катодно защищенных трубопроводах КНР начинается на внешней поверхности трубы, чаще всего в местах нарушения покрытий. Вблизи от участка разрушения под нарушенным покрытием обнаруживают раствор карбоната/бикарбоната натрия, а иногда и кристаллы NaH Og. Предполагают, что эта среда наиболее благоприятна для КРН. В большинстве конструкций, где применяется катодная защита стали от общей коррозии, сталь поляризуют до потенциала —0,85 В по отношению к Си/Си504-электроду, что соответствует значению —0,53 В по н. в. э. Катодная защита подземных трубопроводов может приводить к накоплению на поверхности трубы щелочных продуктов, например гидроксида натрия, а также растворов карбоната/бикарбоната натрия [19, 20]. Ионы водорода, катионы Na+ и вода, содержащая растворенный кислород, мигрируют к катодным участкам трубы через поры  [c.186]

ДОБАВЛЕНИЕ ЩЕЛОЧИ. Оптимальная щелочность котловой воды зависит отчасти от того, в каком количестве накапливаются в котле примеси при медленном просачивании охлаждающей воды в конденсаторе (обычно в местах крепления труб к трубным доскам). Степень просачивания зависит от конструкции и срока службы конденсаторной системы, и состав охлаждающей воды влияет, таким образом, на надежность работы котла. Например, хлорид магния, являющийся естественным компонентом морской воды, которая используется для охлаждения конденсаторов, гидролизуется до НС1 и вызывает кислотную коррозию котла. Периодическое добавление гидроксида натрия в котловую воду нейтрализует кислоту и предотвращает кислотную коррозию [43]. Если нейтрализующие добавки берут в количествах, общепринятых при обработке котловой воды, то применение NH4OH менее эффективно, чем смеси NaOH + NaaP04.  [c.290]


Особым коррозионным свойством циркония является его стойкость в щелочах всех концентраций при температурах вплоть до температуры кипения. Он стоек также в расплаве гидроксида натрия. В этом отношении он отличается от тантала и, в меньшей степени, от титана, которые разрушаются под воздействием горячих щелочей. Цирконий стоек в соляной и азотной кислотах любой концентрации и в растворах серной кислоты с содержанием H2SO4 < 70 % вплоть до температур кипения этих сред. В НС1 и подобных средах оптимальной стойкостью обладает металл с низким содержанием углерода (<0,06 %). В кипящей 20 % НС1 после определенного времени выдержки наблюдается резкое возрастание скорости коррозии конечная скорость составляет обычно менее 0,11 мм/год [461. Цирконий не стоек в окислительных растворах хлоридов металлов (например, в растворах Fe lg наблюдается питтинг), а также в HF и кремнефтористоводородной кислоте.  [c.379]


Смотреть страницы где упоминается термин Гидроксид : [c.22]    [c.81]    [c.100]    [c.250]    [c.279]    [c.284]    [c.316]    [c.364]    [c.373]    [c.13]    [c.13]    [c.13]    [c.100]    [c.100]    [c.101]    [c.101]    [c.102]    [c.103]    [c.103]    [c.103]    [c.103]    [c.104]    [c.104]    [c.104]    [c.105]    [c.105]    [c.106]    [c.107]    [c.108]    [c.110]    [c.111]   
Металлургия благородных металлов (1987) -- [ c.0 ]



ПОИСК



Гидроксид золота

Гидроксид серебра

Источники загрязнения воды и поверхностей оборудования тракта оксидами и гидроксидами железа

Роль оксидов и гидроксидов железа и меди при коррозии



© 2025 Mash-xxl.info Реклама на сайте