Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжения Знаки — Определение на модели

Способы определения знака напряжений на контуре модели а) приложение к модели дополнительной нагрузки (руками), дающей на контуре известный знак напряжений б) давление острым краем по всей ширине модели в случае растяжения вдоль контура—при нажатии порядок полос повышается (полосы сдвигаются внутрь), и наоборот в) применение компенсатора или образчика материала с краевым эффектом известного знака.  [c.527]

Как уже отмечалось, оптическая картина, наблюдаемая в полярископе при нагружении пластины в своей плоскости, характеризует ее напряженное состояние. Однако наблюдаемое двойное лучепреломление представляет собой интегральный эффект по толщине пластины, а если напряженное или деформированное состояния, т. е. и двойное лучепреломление, не постоянны по толщине пластины, то наблюдаемый оптический эффект нельзя использовать непосредственно для определения напряжений в разных точках вдоль пути света (см. разд. 1.8 и 3.3). Это хорошо видно на примере чистого изгиба. Если пластинку нагрузить перпендикулярно ее плоскости так, что в пей создается чистый изгиб, и просвечивать нормально к ее плоскости, то никакого оптического эффекта не наблюдается, так как напряжения, возникающие в пластине с разных сторон от нейтральной поверхности, равны по величине и противоположны по знаку. Аналогичные явления наблюдаются и в пространственной модели. Для решения таких задач разработано несколько методов.  [c.196]


По замеру прогибов в замороженной модели с помощью оптиметра предварительно выявлен характер и знак деформаций отдельных элементов. Для определения напряжений выполнена разрезка на меридиональные и тангенциальные пластинки по всей толщине покрывающего диска и лопаткам (фиг. 21, б) а) пластинки А, Б, В для определения меридиональных напряжений по внешней и внутренней сторонам покрывающего диска замер при просвечивании произведен в кольцевом направлении в 16 точках (с обеих сторон в каждой пластинке) 6) пластинки 1 — 7 — для определения кольцевых напряжений в трех сечениях, как указано на фиг, 21, б, слева замер m производят в одной или двух точках при просвечивании в меридиональных плоскостях в) две лопатки для контроля расположенные под углом 90 ), напряженное состояние в которых рассматривается как плоское г) торцовые срезы с втулки с обеих сторон крыльчатки для определения напряжений во втулке и концентрации напряжений в месте сопряжения лопатки со втулкой. Напряжения в модели подсчитывают по формуле о = а  [c.592]

Расчеты проводили применительно к числу циклов, вызвавшему образование трещин. Оказалось, что максимальные напряжения и деформации на периферии дисков практически не зависели от начальных зазоров между зубьями замка если же принять равномерное распределение контурной нагрузки, то ошибка при определении максимальных деформаций не превышает 10-12%. Расчеты показали, что максимальные деформации образуются в элементах, расположенных у места образования трещин, причем для обеих моделей дисков 137 и 138 накапливающиеся мгновенные пластические деформации и деформации ползучести имеют противоположные знаки  [c.494]

Определение характеристик напряженного состояния. Направления квазиглавных напряжений в модели совпадают с квазиглавны-ми оптическими направлениями хх . Знак квазиглавного напряжения устанавливается в соответствии со, знаком оптической чувствительности материала модели. Средняя разность квазиглавных напряжений в слоях  [c.30]

Анализ модели позволил предсказать возможность аномального протекания процессов смещения петли после определенной предыстории, приводящей к деформационной анизотропии циклическую релаксацию с возрастанием асимметрии при жестком цикле нагружения и циклическую ползучесть в направле-йии, противоположном по знаку среднему напряжению,— при Мягком. Эти эффекты аномального смещения петли гистерезиса Наблюдались в специально поставленных экспериментах (сталь 12Х18Н9Т). В первом опыте (рис. А5.31, а) предельное увеличе-  [c.197]


Уравнению (3.3) соответствует семейство изохронных кривых рис. 2, б и в). При использовании этих кривых для перехода от б к т в случае плоской задачи будет вноситься тем большая погрешность, чем сильнее различаются величины Г и t в рассматриваемых точках модели. Эта погрешность будет, однако, невелика, если для материала модели мало отношение коэффициентО В С2/С1 (вернее, второй член правой части зависимости (2.2) составляет небольшую долю общей оптической разности хода). Такими свойствами обладают, в частности, эфиры целлюлозы. Например, при использовании целлулоида даже в наиболее неблагоприятном случае, когда главные напряжения Oi и Ог имели одинаковые знаки и, следовательно, величины Гит существенно различались, относительная погрешность определения напряжения т при помощи указанных изохронных кривых была порядка 5—6 % [2].  [c.125]

Как мы уже отметили, характер напряжений в зоне резания может быть экспериментально определен также оптическим методом на прозрачной модели. Сущность этого метода заключается в том, что прозрачные изотропные тела при деформации становятся анизотропными, двупреломляющими и дают цветную картину распределения в них напряжений, если их рассматривать в поляризованном свете. Интерференционная картина, возникающая в зоне деформируемого прозрачного образца, дает возможность определить не только знак действующего напряжения, но и его относительную величину. Все точки прозрачной модели, имеющие одну и ту же разность главных нормальных напряжений, дают в поляризованном свете один и тот же цвет. На фотографической пластинке интерференционная картина получается в виде темных и светлых линий, соответствующих определенным цветам, т. е. определенным раз-  [c.80]

Знак нормальных напряжений вдоль ненагруженного контура плоской модели в простейших случаях можно найти, используя условия равновесия или исходя из знака напряжений в соседних зонах. В более сложных случаях для определения знака нормальных напряжений, а также для определения, растет или падает порядок полос от края внутрь модели, производится незначительное нажатие по всей толщине модели острым предметом из материала более жесткого, чем дюдель (край лезвия, угол стального бруска, ноготь). Так как сосредоточенное давление дает разность главных напряжений, соответствующую растяжению вдоль контура, то на растянутом контуре модели порядок полос от нажатия будет увеличиваться и на сжатом контуре — уменьшаться. Соответственно, если полосы при нажатии от растянутого (сжатого) контура- отдаляются (приближаются к нему), то величина порядка полос при переходе от контура внутрь модели падает (фиг. III. 6).  [c.170]

Электрическая модель ЭМСС-1 Таганрогского радиотехнического института [42], основанная на аналогии деформируемого стержня и трехполюсника, позволяет вести расчет плоских и пространственных балок и рам. Основные части модели ЭМСС-1 а) пассивная часть модели для воспроизведения стержней, выполненная из 40 переменных сопротивлений б) активная—для воспроизведения нагрузки в виде двух девятиобмоточных трансформаторов в) измерительная, состоящая из моста постоянного тока для определения сопротивлений, моделирующих стержни, и вольтметра для определения величины и знака э. д. с. (нагрузок) и напряжений (моментов и углов поворота). Модель питается переменным током 220 в максимальная  [c.266]

Определение остаточных напряжений производили на приборе ПИОН-2 на заводской методике. Расчет напряжений осуществляли на ЭВМ Минск-32 . Лопатки обрабатывали по спинке и корыту на станках модели 3813Д с помощью твердосплавного копира. Предварительное формообразование лопаток осуществляли методом штамповки с последующим фрезерованием. Численное значение, знак и эпюры распределения остаточных напряжений фрезерованных лопаток принимали за исходные, по которым затем изучали влияние процесса шлифования новыми, затупленными лентами, в начале и конце реверса направления вращения ленты на распределение остаточных напряжений в поверхностном слое лопаток.  [c.128]


Трудности в определении импеданса препятствия возникают каждый раз, когда под воздействием звуковой волны в самом препятствии генерируется волновое поле, существенно влияющее на характер взаимодействия между звуковой волной и препятствием. Это внутреннее волновое поле, как правило, сильно зависит от формы препятствия, вида падающей звуковой волны, частотного диапазона воздействия и других факторов. Именно поэтому такое взаимодействие звука с препятствием не удается достоверно описать с использованием понятия импеданса. В этом случае необходимо решать задачу об определении волновых полей в полной, кусочно-однородной области, заменяя граничные условия условиями сопряжения. В общем случае поведение волнового поля в препятствии может и не описываться моделью идеальной сжимаемой жидкости. В частности, препятствие может быть твердым упругим телом, твердым электроупругим телом и т. д. В каждом конкретном случае количество условий сопряжения волновых полей будет различным. Однако они всегда должны включать в себя условия равенства давления в звуковой волне и взятой со знаком минус нормальной составляющей вектора напряжений на границе  [c.7]


Смотреть страницы где упоминается термин Напряжения Знаки — Определение на модели : [c.165]   
Справочник машиностроителя Том 3 Изд.3 (1963) -- [ c.589 ]



ПОИСК



Знаки

Напряжение Определение

Напряжения модели



© 2025 Mash-xxl.info Реклама на сайте