Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Платина Кристаллическая структура

Другие соединения. Вопрос существования соединения в области составов 60 — 62,5 ат. % платинового металла, их стехиометрии и кристаллической структуры в системах с родием, палладием и платиной окончательно не решен.  [c.189]

Измерение высоких температур связано с трудностями, обусловленными большими скоростями процессов диффузии, окисления, изменения кристаллической структуры и т. п. Поэтому только платина и ее сплавы с металлами платиновой группы пригодны для длительной эксплуатации в окислительных средах. При этом платина проявляет склонность к выделению из сплавов в виде летучей окиси, которая в определенных условиях восстанавливается до платины. При длительной эксплуатации восстановленная платина образует нитевидные кристаллы, которые могут шунтировать электроды термопары, снижая ее показания. Для инертной среды и вакуума применяются различные тугоплавкие металлы и их сплавы.  [c.252]


ЗОЛОТО — ПЛАТИНА (Аи — Pt) 1. Диаграмма состояния и кристаллическая структура  [c.173]

В твердом состоянии все металлы имеют кристаллическое строение. Объемноцентрированную кубическую решетку имеют а-железо, хром, молибден, вольфрам гранецентрированную кубическую решетку имеют у-железо, алюминий, никель, медь, свинец, платина гексагональную — цинк, бериллий, магний, титан. Другие металлы, например олово, марганец, висмут, имеют более сложную кристаллографическую структуру.  [c.8]

Физические свойства золота и серебра. Золото — единственный металл, обладающий в химически чистом виде в слитках чистым желтым цветом. Незначительные количества примесей или лигатуры резко изменяют цвет золота. Примесь серебра в малых количествах ослабляет желтый цвет золота, а медь, наоборот, усиливает его. Коллоидное золото в зависимости от степени дисперсности и структуры частиц имеет самые разнообразные цвета, начиная от пурпурового и кончая синевато-фиолетовым. Иногда золи золота имеют коричневато-пурпуровую и даже черную окраску. Золото обладает чрезвычайно высокой ковкостью, оно расплющивается и прокатывается в весьма тонкие листочки. В тонких листках золото просвечивает и в проходящем свете кажется зеленым, а в отраженном — желтым. При холодной обработке золота сказывается влияние наклепа, легко устранимое путем отжига. Прокатанные, а затем протравленные листки золота указывают на деформацию кристаллитов, происходящую при механич. обработке. Золото (так же, как серебро и платина) кристаллизуется в кубической системе. Кристаллические решетки золота, серебра и меди представляют куб с центрированными гранями. Параметры их кристаллических решеток  [c.416]

Таким образом, все металлы VHI группы образуют с титаном фазы на основе эквиатомных соединений с кристаллической структурой типа s l. Эта структура в системах с железом, рутением, осмием и кобальтом устойчива вплоть до комнатной температуры во всей области гомогенности этих фаз. В системах с родием и иридием существует узкий интервал ее устойчивого состояния при сравнительно низких температурах за счет стабилизации избыточным, по сравнению с эквиатомным составом, содержанием титана. В сплавах близких к эквиатомному, а в системах с никелем, палладием и платиной — во всей области гомогенности — с понижением температуры  [c.187]

Из восьми благородных металлов шесть имеют структуру кристаллической решетки куба с центрированными гранями (табл. I) родий, палладий, серебро, иридий, платина и золото. Два металла — рутений и осмнн — имеют гексагональную плотноупакованную решетку. Родий известен в двух модификациях uRh имеет решетку простого куба, pRh — решетку куба с центрированными гранями. Температура превращения а 1030° С. Имеются предположения о существовании четырех модификаций рутения.  [c.394]


Платина — рутений. Рутений растворяется в платине в твердом состоянии вплоть до 66% весовых. В области сплавов, богатых рутением, следует предполагать разрыв сплоп[ности твердых растворов, так как компоненты обладают различными структурами кристаллических решеток.  [c.411]

Железо, никель и в меньшей степени хром увеличивают коррозионную стойкость циркония, задерживая наступление стадии ускоренной коррозии как в воде, так и в паре. В том случае, когда цирконий загрязнен азотом, углеродом или другими вредными примесями, железо, никель и хром сообщают ему меньшую коррозионную стойкость, чем олово. Максимальная коррозионная стойкость достигается при добавлении в сплав 0,25% железа и никеля (в сумме) [111,231 111,243]. Увеличение суммарной концентрации этих элементов в сплаве свыше 0,5% приводит к ухудшению его коррозионной стойкости. В значительной степени стойкость сплавов, легированных железом и никелем, зависит от термообработки и структуры металла. Сплавы, легированные до 2% железом, никелем и хромом порознь или в сочетании друг с другом, имеют более высокую коррозионную стойкость в водяном паре при температуре 400— 815° С, чем кристаллический прутковый цирконий. Интересно отметить, что при введении в цирконий 0,1% никеля или железа и 0,5% платины коррозионные потери уменьшаются, но увеличивается количество водорода, выделившегося в процессе коррозии [111,228]. Последнее обстоятельство позволяет предполагать, что указанные легирующие компоненты действуют в данном случае как эффективные катодные присадки. Увеличение скорости катодного процесса при введении в цирконий этих металлов приводит к смещению стационарного потенциала в положительную сторону. При этом стационарный потенциал смещается в область пассивации и скорость коррозионного процесса соответственно уменьшается. По данным М. Е. Страуманиса [111,240], введение в плавиковую кислоту ионов платины приводит к пассивации циркония. Это еще раз подтверждает, что легирующие компоненты — железо и никель можно рассматривать как эффективные катодные присадки. Катодная поляризация смещает стационарный потенциал циркония и его сплавов в отрицательную сторону (в область активного растворения) и тем самым вызывает увеличение скорости коррозии [111,228]. В сплаве циркония, легированном 0,1% железа и 0,1% никеля, количество гидридов больше, чем в нелегированном. Следовательно, скорость катодного процесса разряда ионов водорода увеличивается при легировании циркония железом и никелем. Характер окисной пленки в этом случае, видимо, не является решающим в определении коррозионной стойкости циркония. Величина емкости при легировании циркония железом, никелем, оловом возрастает в 5—10 раз, в то время как скорость коррозии остается практически постоянной  [c.221]

ИЛИ спекания под давлением. Как сообщалось, температура перехода для двух постулированных форм составляет 1000°. Однако наблюдалось, что кривая зависимости э. д. с. от температуры для платина-родиевой термопары не имеет скачков, наличие которых можно было бы ожидать в случае полиморфизма. Для доказательства этого недавно была исследована (61 структура спецнальпого очень чистого образца металла, содержавшего примеси в количестве менее 0,001%. Было установлено, что размер элементарной кристаллической решетки изменялся плавно и непрерывно в интервале от комнатной температуры до 1600° н что электрическое сопротивление изменялось непрерывно и обратимо при нагревании и охлаж-.аении образца от комнатной температуры до 1450°. Это доказательство  [c.493]

Другое явление, связанное с образованием твердых растворов металлов, заключается в развитии сверхструктуры при тщательном отжиге сплавов. Это превращение типа порядок — беспорядок приводит к образованию так называемых интерметаллнческих соединений. Некоторые примеры перестройки кристаллической решетки подобного рода известны и среди хорошо изученных двойных сплавов платппы или палладия (наряду со спла-DOM родия с медью). Из физических основ металловедения известно, что образование сверхструктуры может происходить в тех случаях, когда условия благоприятствуют хорошей взаимной растворимости, но когда радиусы участвующих в превращении атомов сильно разнятся, хотя и не настолько, чтобы полностью помешать образованию растворов. Интересно отметить, что образование сверхструктуры происходит, по-видимому, в сплавах платины или палладия с некоторыми обычными металлами (табл. 8), хотя сведений о том, что это явление наблюдается в двойных системах, образованных самими платиновыми металлами, не имеется. Ясно, что обычные металлы (см. табл. 8) отличаются по величине своих атомных радиусов от платиновых мета.7Лов, серебра и золота. Некоторые из этих упорядоченных структур с обычными металлами, особенно с кобальтом, обладают интересными магнитными свойствами.  [c.497]


Высокие температуры плавления имеют также плотноупакован-ные металлы VIII—X групп рений (3180° С), рутений (2250°) родий (1960°), осмий (3045°), иридий (2445°), палладий (1552°) и платина (1769° С), однако вследствие малой распространенности и высокой стоимости эти металлы не перспективны для использования в качестве жаропрочных. Лишь пла гина и некоторые ее сплавы нашли ограниченное применение для тиглей, используемых при варке оптического стекла и для других специальных областей. Эти металлы имеют одинаковые плотноупакованные структуры вследствие заполнения валентными электронами второй половины оболочки или состояния Близость их электронного и кристаллического строения также обусловливают образование при взаимном растворении широких или непрерывных рядов ПГ или ГЦК растворов и широкие возможности твердорастворного упрочнения.  [c.39]

Фотоэлектронные спектры валентных электронов родия, палладия, серебра и иридия, платины, золота (см. рис. 28) показывают постепенное расщепление формирующейся d-оболочки по мере заполнения 2е-состояния, На рис. 29 показано расщепление глубокой остовной й -оболочки элементов от палладия до ксенона на два пика меньшего для eg (й )-состояния и большего для t2g (d )- o-стояния. На это расщепление заметно не влияет внешнее кристаллическое поле, поскольку палладий, серебро и индий имеют ГЦК структуру К = 12), кадмий — плотную гексагональную К = 12),. олово — искаженную ОЦК (/С = 4 -(- 2), сурьма — простую гексагональную (/С = 3), теллур — ромбическую (К = 2), но совер шенно разное окружение атомов в их решетках не изменяет характер двугорбого d-пика. Глубокое расщепление 5d -oбoлoчки на (d )-  [c.58]

Минералы в большинстве своем твердые кристаллические ве-. щества они различаются по составу, структуре, цвету, блеску, плотности, твердости и иным признакам. В зависимости от со- става минералы подразделяются на окислы, сульфиды, силикаты и др. Например, халькопирит СиРеЗа относят к сульфидам, гематит РегОз к окислам, смитсонит 2пСОз к карбонатам, каолинит АЬОз-25102-2Н20 к алюмосиликатам. Реже встречаются самородные минералы, представленные свободными элементами или их сплавами. В числе последних можно назвать самородную медь, серебро, самородные сплавы золота или платины с другими металлами.  [c.34]

Пироуглеродные осадки, полученные на различных металлических и кварцевых поверхностях, имеют существенное различие. По данным электронно-микроскопических исследований [7-26] при 1000 С на кварце образуется пироуглерод со структурой кристаллов, имеющих низкую степень трехмерного упорядочения ( 002 = = 0,344 нм). По данным дифракции электронов в отдельных случаях слои до 50 нм могут иметь высокоупорядоченную структуру. При отложении на платине образуется два вида пироуглерода а) кристаллический (й оо2 = 0,336 нм) и б) без трехмерного упорядочения с параметрами, близкими к полученным при осаждении на кварце.  [c.130]


Смотреть страницы где упоминается термин Платина Кристаллическая структура : [c.187]    [c.189]    [c.417]    [c.31]    [c.51]    [c.368]    [c.107]    [c.80]   
Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.437 ]



ПОИСК



411—416 — Структура кристаллическая

Кристаллические

Платина

Платинит



© 2025 Mash-xxl.info Реклама на сайте