Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Энергия кинетическая механизма систем — Теорема

Уравнением движения принято называть аналитическую зависимость между силами, действующими на звенья механизма или машины, и параметрами их движения. Оно может быть выражено в форме уравнения сил или моментов сил, а также в дифференциальной форме. Основой уравнения движения механизма является известная теорема механики изменение кинетической энергии механической системы за некоторый промежуток времени равно величине работы всех сил, действующих на эту систему, на возможных перемещениях их точек приложения за тот же промежуток времени. В общем случае уравнение движения имеет вид  [c.145]


Согласно определению математического ротора усилие Р является приведенной силой физического ротора согласно уравнению (64). Точкой приведения силы Р является точка Шток 5 имеет массу Шц,, которая также является приведенной для данного физического ротора. Вал ротора служит звеном приведения момента сил М . В плоскости перемещения грузов имеются две системы координат с началами в точках О и От. Точка О может быть выбрана произвольно на оси вращения (оси Оу), точка 0 является точкой приведения силы Р, лежит на оси Оу и является одновременно вершиной профиля 3. Согласно схеме рис. 42 на рис. 43 ордината точки приведения силы Р в системе хОу обозначена Ь и изменяется от до Следовательно, координаты точки Ох в начальном положении в координатной системе хОу (О Ьх) оси х обеих систем параллельны. Обе системы вращаются вместе с ротором. Ротор имеет приведенный момент инерции, определяемый форл улой (62). Под моментом инерции У понимается некоторая постоянная величина, равная моменту инерции покоя изучаемого физического ротора. МомеНт инерции Д/ из формулы (62) может быть найден из анализа рис. 43. Любой элементарный механизм ротора имеет общий центр масс активных подвижных звеньев, перемещение которого, а также перемещение активных подвижных звеньев относительно этого центра определяет величину ДУ. В математическом роторе (см. рис. 43) активные звенья каждого элементарного механизма заменены одним центробежным грузом 1 (следовательно, число грузов в математическом роторе равно числу элементарных механизмов в роторе данного физического толкателя). Для такой замены необходимо, чтобы кинетическая энергия груза 1 в каждый момент времени равнялась кинетической энергии этих звеньев. Согласно теореме Кенига кинетическая энергия последних равна кинетической энергии массы, сосредоточенной в центре масс элементарного механизма, и сумме кинетических энергий всех материальных точек активных подвижных звеньев в движении относительно центра масс. Кинетическая энергия каждого центробежного груза (см. рис. 43) в его движении относительно корпуса 7  [c.119]

В частных случата некоторые из векторов, а возможно и все, равны нулю или настолько малы, что ими можно пренебречь. Для составления уравнения движения машинного агрегата используется теорема об изменении кинетической энергии механизма как система твердых тел с учетом принхщпа затвердевания (переменную массу выносят за знак дифференцирования как постоянную величину и оператор отмечают звездочкой.) Для этого случая  [c.496]



Справочник машиностроителя Том 1 Изд.3 (1963) -- [ c.397 , c.400 ]



ПОИСК



Кинетическая системы

Кинетическая энергия системы

Кинетическая энергия—см. Энергия

Механизмы Энергия кинетическая

Системы механизмов

Теорема о кинетической кинетической энергии

Теорема о кинетической энергии

Теорема о кинетической энергии системы

Теорема системы

Энергия Теорема

Энергия кинетическая

Энергия кинетическая (см. Кинетическая

Энергия кинетическая (см. Кинетическая энергия)

Энергия системы



© 2025 Mash-xxl.info Реклама на сайте