Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Работа в квазистатической термодинамике

Работа в квазистатической термодинамике  [c.155]

Первое начало термодинамики выражает закон сохранения энергии в применении к преобразованиям механической энергии в тепловую и обратно. Для квазистатических процессов его можно сформулировать следующим образом подведенное к единице массы газа элементарное количество теплоты dQ расходуется на повышение внутренней энергии газа dU и на выполнение работы расширения pdv  [c.149]


Не занимаясь попытками дать универсальное определение термодинамических потенциалов, называемых также характеристическими функциями, сразу всех возможных типов, отличающихся друг от друга по своему физическому смыслу, а подчас и по размерности (мы будем поэтому рассматривать их по отдельным фуппам, начиная с п. а) последующего изложения), отметим только, что их основные свойства,, как и их частные определения, основываются на общей для всех дифференциальной форме, выражающей I и И начала термодинамики для квазистатических процессов, и на конкретном для каждого потенциала выборе набора макроскопических параметров, с помощью которых фиксируется термодинамическое состояние равновесной системы. Именно частные производные потенциалов по этим параметрам определяют все интересующие нас в рамках квазистатической теории характеристики системы, а их приращения — работу системы и соответствующие тепловые эффекты. Так как упомянутая дифференциальная форма Записана нами в терминах полных дифференциалов используемых величин (см., например, 4, п. г)), то вводимые с ее помощью характеристические функции автоматически оказываются однозначными функциями термодинамического состояния системы (что и оправдывает использование для них термина потенциалы ).  [c.64]

Все реальные, осуществляемые человеком в его целях, процессы — суть процессы нестатические. Процессы ква-зистатические — суть абстрактные, идеальные процессы. Искусственно осуществить квазистатический процесс невозможно. Но, как было показано на примере, в условиях такого процесса величину внешнего воздействия (в данном случае — работу) в простой форме можно определить через параметры самой системы. Это открывает путь для количественного анализа. Поэтому понятие о квазистатическом процессе в термодинамике является понятием эталона, мерой сравнения и оценки реальных процессов. Весь аппарат-термодинамического метода исследования строится на основе понятия о квазистатическом процессе, позволяющем в наиболее простой и удобной для анализа форме записывать величину внешнего воздействия. Вот почему М. Ф. Окатов и И. Д. ван-дер-Ваальс цикл своих лекций назвали Курсом термостатики , подчеркивая тем самым квазистатический характер рассматриваемых процессов. Учитывая характер изучаемых процессов, можно было бы назвать эту науку и Термодинастатикой .  [c.14]

Магнитное поле при включении не сразу достигает своей конечной величины, а устанавливается в течение определенного промежутка времени. Этот промежуток времени настолько велик по сравнению с периодом обращения эле Строна, что весь процесс можно рассматривать как очень медленный, подобно квазистатическим процессам в термодинамике. Поэтому в каждый момент времени должно соблюдаться равенство между суммой квазиупругой силы и силы Лоренца, с одной стороны, и центростремительной силой — с другой. Однако центростремительная сила будет меняться, потому что возрастание магнитного поля по закону электромагнитной индукции влечет за собой появление вихревого электрического поля с осью симметрии, совпадающей с направлением магнитного поля. Именно это электрическое поле в силу своего вихревого характера ускоряет электрон, изменяя кинетическую энергию его орбитального движения. Сила Лоренца не может изменить частоту обращения, так как она направлена перпендикулярно к скорости и, следовательно, никакой работы совершить не может.  [c.108]


Сочинение М. А. Леонтовича имеет следующие построение и содержание Раздел 1 — Основные понятия и положения термодинамики (состояние физической системы и определяющие его величины работа, соверщаемая системой адиабатическая изоляция и адиабатический процесс закон сохранения энергии для адиабатически изолированной системы закон сохранения энергии в применении к задачам термодинамики в общем случае (первое начало термодинамики) количество тепла, полученное системой термодинамическое равновесие температура квазистатические (обратимые) процессы теплоемкость давление как внешний параметр энтальпия обратимое адиабатическое расширение или сжатие тела применение первого начала к стационарному течению газа или жидкости процесс Джоуля—Томсона второе начало термодинамики формулировка основного принципа).  [c.364]

Хотя реальные процессы являются О. п. лишь в нек-ром приближении, они играют значительную роль в термодинамич. расчетах, т. к. только по отношению к ним соотношения макроскопич. термоди-намш и имеют вид равенств или ур-ний. Действительно, дифференциальное выражение второго начала термодинамики dS OQ/T имеет вид равенства только в том случае, если поглощение системой количества теплоты OQ произошло квазистатически. О. п., протекающий в изолированной системе, не сонрово-ждается изменением энтропии, что может служить критерием обратимости термодинамич. процесса. В общем случае термодинамич. соотношения имеют xapairiTep неравенств, а выводы, сделанные на основе расчетов О. гг. — характер предельных соотношений (напр., теорема о максимальной работе). Построение термодинамич. теории неравновесных процессов связано с привлечением дополнительных (по отношению к первому и второму началам) физич. предположений (см. Необратимые процессы).  [c.470]

Иногда говорят, что термодинамика в действительности является не термодинамикой, а скорее термостатикой, так как ее можно применять для количественного описания лишь равновесных состояний или квазистатических процессов. Однако за последние десять лет были достигнуты значительные успехи в применении термодинамического способа описания в более широкой области физических процессов, уже не являющихся квазистатическими. Прекрасное изложение такого подхода дано в работах де Гроота [1], Пригожина [2] и других. Феноменологическую теорию этого типа иногда называют квазитермодинамической теорией.  [c.345]

В термодинамике понятие Э. было введено нем. физиком Р, Клаузиусом (1865), к-рый показал, что процесс превращения теплоты в работу подчиняется определ. физ. закономерности — второму началу термодинамики, к-рое можно сформулировать строго математически, если ввести особую ф-цию состояния —д. Так, для термодинамич. системы, совершающей квазистатически (бесконечно медленно) циклич. процесс, в к-ром система последовательно получает малые кол-ва теплоты 6Q при соответствующих значениях абс. темп-ры Т, интеграл от приведённого кол-ва теплоты ЬQlT  [c.904]


Смотреть страницы где упоминается термин Работа в квазистатической термодинамике : [c.39]    [c.27]    [c.80]   
Смотреть главы в:

Термодинамика и статистическая физика Теория равновесных систем  -> Работа в квазистатической термодинамике



ПОИСК



Работа в термодинамике

Термодинамика



© 2025 Mash-xxl.info Реклама на сайте