Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Момент кручения в балках статический для сечений

Вторая балка (рис. 62.7, б) загружена на свободном конце вертикальной силой Р, проходящей через ось балки (ось х). Эта сила создает относительно оси центров изгиба момент, равный Рс, действующий в плоскости поперечного сечения и направленный против часовой стрелки. Следовательно, заданная сила Р статически эквивалентна силе Р =Р, проходящей через ось центров изгиба, и скручивающему моменту Рс (действующему против часовой стрелки). В данном случае балка испытывает прямой поперечный изгиб (от силы Р1) и кручение от момента Рс. В поперечных сечениях балки при этом возникают нормальные и касательные напряжения, определяемые, как при прямом поперечном изгибе, и, кроме-того, касательные напряжения от действия скручивающего момента Рс. Последние приближенно можно определить по формулам, приведенным в 6.6.  [c.314]


Двутавровая балка, шарнирно-опертая на концах, нагружена равномерно распределенными крутящими моментами т = = 1 кН-м/м и равномерно распределенной нагрузкой = 50 кН/м, которая расположена в главной плоскости балки zOy (рис. а). Вычислить наибольшие напряжения а , Тщ и Тц и определить наибольшие нормальные и касательные напряжения и х у, возникающие при поперечном изгибе построить эпюры О ш) Тщ, СТ И а = + а . Заданы наибольшие главные секториальные координаты в точках / и 3 профиля соо = 137,9 см и в точках 2 и 4 — о)о = —137,9 см (см. рис. а) секториальный момент инерции Jo> = 247 210 см геометрическая характеристика сечения при чистом кручении = = 96,55 см изгибно-крутильная характеристика k = 0,0122 m момент инерции = 23 850 см статический момент полусечения относительно нейтральной оси = 718,4 см . Размеры сечения на рис. а даны в сантиметрах.  [c.234]

Если жесткость на кручение весьма мала, мы можем считать, что поперечная балка (ригель) шарнирно скреплена с двумя консолями. Тогда система становится статически определимой, и изгибающие моменты в сечениях рамы определяются из условий равновесия (рис. 108).  [c.133]

Метод сечения при изгибе, как и при других видах деформаций, дает возможность определить изгибающий момент и поперечную силу в сечении балки. Вопрос же распределения упругих сил по сечению является вообще задачей, статически неопределимой. Такие задачи, как мы это видели выше, решаются на основании рассмотрения деформаций. При растяжении и сжатии предполагалось, что все волокна материала получают в направлении действия, сил одинаковые относительные деформации отсюда делалось заключение, что напряжения распределяются по сечению равномерно. Вопрос о распределении напряжений при кручении был решен на основании предположения, что относительные сдвиги отдельных элементов поперечного сечения прямо пропорциональны их расстоянию до оси стержня. Выяснение закона распределения напряжений по сечению при изгибе также может быть выполнено только па основании рассмотрения деформаций.  [c.216]

Статический момент сечення 209 Стесненное кручение коробчатых пролетных строений железобетонных 161—171 металлических 286—293 Стрелочные переводы монорельсовых дорог 390—391 Стыки между коробчатыми балками  [c.443]

В плоскости подвеса груз (стрелы) статической схемой колон ны (рис. 3.75, а, б, в) является бал ка на двух опорах с консолью а в перпендикулярной плоскости — балка, защемленная одним концом Колонна может испытывать изги( в двух плоскостях и кручение Благодаря круглому сечению колон ны и переменности изгибающи моментов по ее высоте наибола напряженные волокна в различны сечениях колонны будут находить ся под разными углами к ос1 стрелы.  [c.344]


Уравнения движения для поперечного сечения аэродинамической поверхности или балки жесткости моста. Рассмотрим поперечное сечение аэродинамической поверхности или балки жесткости моста (рис. 6.20), находящегося под действием набегающего потока с плавным течением. Принимаем, что сечение имеет две степени свободы, соответствующие перемещениям при изгибе и кручении, которые обозначаем соответственно через hua. Механическая система на единицу длины характеризуется массой т, моментом инерции I, статическим моментом масс S (равным произведению массы т на расстояние а между центром масс и центром жесткости), вертикальной восстанавли-ваюш,ей силой и восстанавливающим крутящим моментом, задаваемыми с помощью коэффициентов упругости и С , и коэффициентами сопротивления Сд и Са. Используя ЭТИ определения, уравнения движения можно записать в виде [6.66, 6.67]  [c.179]


Смотреть страницы где упоминается термин Момент кручения в балках статический для сечений : [c.169]    [c.169]    [c.34]   
Справочник машиностроителя Том 3 Изд.2 (1956) -- [ c.276 ]



ПОИСК



Балка сечения

Балки Статический

Балки кручение

Момент кручения

Момент статический

Сечения Момент статический



© 2025 Mash-xxl.info Реклама на сайте