Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод многих переменных (процедура разложения

Метод многих переменных (процедура разложения производной)  [c.254]

Глава 1 содержит обозначения, определения и действия над асимптотическими разложениями. Источники неравномерности в разложениях возмущения классифицированы и рассмотрены в главе 2. Глава 3 посвящена методу координатных преобразований, в котором равномерность достигается путем разложения как зависимой, так и независимой переменных в ряды по новым независимым параметрам. В главе 4 описываются метод сращивания асимптотических разложений и метод составных асимптотических разложений. Первый метод позволяет выразить решение с помощью нескольких разложений, пригодных в различных областях и согласованных между собой с помощью процедуры сращивания второй метод представляет решение в виде единственного всюду пригодного разложения. В главе 5 для исследования медленных изменений амплитуд и фаз слабо нелинейных волн и колебаний используются понятия быстрых и медленных переменных в сочетании с методом вариации произвольных постоянных. Методы глав 3, 4 и 5 обобщены в главе 6 и объединены в одну из трех разновидностей метода многих масштабов. В главе 7 рассмотрены существующие методы построения асимптотических решений линейных обыкновенных дифференциальных уравнений и уравнений в частных производных.  [c.8]


Это уравнение определяет основную процедуру вариационного метода Канторовича-Власова, являющегося развитием более общего метода Фурье разделения переменных применительно к уравнениям теории упругости. Для сведения дифференциального уравнения в частных производных к обыкновенному дифференциальному уравнению необходимо использовать разложение (7.2) и выполнить операции в (7.5), т.е. умножить обе части исходного дифференциального уравнения на выбранную функцию ХДх) и проинтегрировать в пределах характерного размера пластины (для прямоугольной пластины это ее ширина). Точное решение получается, когда ряд (7.2) не усекается, а из (7.5) следует бесконечная система линейных дифференциальных уравнений и расчетная схема имеет бесконечное число степеней свободы в двух направлениях. При этом весьма удобно использовать ортогональную систему функций X x). В этом случае будут равны нулю многие побочные коэффициенты системы линейных дифференциальных уравнений (7.5) и она существенно упростится, а при шарнирном опирании вообще распадается на отдельные уравнения. В расчетной практике весьма редко используют два и более членов ряда (7.2), ограничиваясь только первым приближением. Связано это с высокой точностью получаемых результатов, вследствие, как представляется, незначительного расхождения между приближенной схемой и реальным объектом. Формально это выражается в надлежащем выборе функции Х х). Чем точнее она описывает какой-либо параметр в направлении оси ОХ, тем меньше погрешность результата.  [c.392]


Смотреть страницы где упоминается термин Метод многих переменных (процедура разложения : [c.236]   
Смотреть главы в:

Методы возмущений  -> Метод многих переменных (процедура разложения



ПОИСК



Метод разложения

Методы переменные

Процедура

Разложение сил



© 2025 Mash-xxl.info Реклама на сайте