Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение Бернулли для течения жидкости в трубопроводе

Наиболее точный расчет скорости подвижной поперечины при насосно-аккумуляторном приводе можно выполнить с помощью уравнений неустановившегося движения жидкости, полученных Н. Е. Жуковским и называемых уравнениями гидравлического удара. Однако их использование связано с громоздкими вычислениями. Кроме того, необходимо знать опытные коэффициенты местных сопротивлений, зависящие от конструкции элементов гидравлических систем (гладкие трубы тех или иных размеров, тройники, угольники, клапаны и т. д.), а также характер течения жидкости. Поэтому обычно при расчетах гидросистем, в которых имеется неустановившееся движение жидкости, используют уравнение Д. Бернулли, не учитывающее упругости жидкости и трубопровода (в приводимом уравнении скорость жидкости в трубах приведена к скорости рабочего плунжера пресса)  [c.133]


Скорости течения несжимаемой жидкости обратно пропорциональны сечениям трубопровода чем меньше поперечное сечение трубопровода, тем больше скорость течения несжимаемой жидкости, тем, по уравнению Бернулли, меньше статическое давление  [c.36]

Уравнение Бернулли для течения жидкости в трубопроводе  [c.229]

Пользуясь уравнениями неразрывности и Бернулли для установившегося движения и учитывая гидравлические потери, определяем скорость течения жидкости в трубопроводе и его диаметр  [c.296]

Динамика жидкости в заданном поле течения определяется нестационарным уравнением сохранения энергии Бернулли, которое для линии тока Г, соединяющей открытый конец трубопровода с выходным сечением трещины, имеет вид  [c.42]

Г. изучают движение капельных жидкостей, считая их обычно несжимаемыми. Однако выводы Г. применимы и к газам в тех случаях, когда их плотность можно практически считать постоянной. Рассматривая гл. обр. т. н. внутр. задачу, т. е. движение жидкости в ТВ. границах, Г. почти не касается вопроса о распределении силового воздействия на поверхность обтекаемых тел. Г. обычно разделяют на две части теор. основы Г., где излагаются важнейшие положения учения о равновесии и движении жидкостей, и практич. Г., где эти положения применяются для решения частных вопросов инженерной практики. Осн. разделы практич. Г. течение по трубам (Г. трубопроводов), течение в каналах и реках (Г. открытых русел), истечение жидкости из отверстий и через водосливы, движение в пористых средах [фильтрация). Во всех разделах Г. рассматривается как установившееся (стационарное), так и неустановившееся (нестационарное) движение жидкости. При этом осн. исходными ур-ниями явл. Бернулли уравнение, неразрывности уравнение и ф-лы для определения потерь напора.  [c.116]

При расчете сложных трубопроводов составляется баланс расходов в узловых точках (равенство притоков и оттоков жидкости) и баланс напоров на кольцевых участках (равенство нулю алгебраической суммы потерь напора для каждого кольца). Для ламинарного режима течения задача сведется к системе линейных алгебраических уравнений. Для турбулентного режима течения задача становится значительно сложнее необходимо решать систему трансцендентных уравнений, которая не имеет общего алгоритма решения. Во многих случаях задачу расчета сложной системы трубопроводов при установившемся режиме течения в турбулентной области проще решать методом установления, используя уравнение Бернулли для не-установившегося течения. В этом случае расчет сводится к задаче Коши для системы обыкновенных дифференциальных уравнений (см. раздел 15.2), которая алгоритмически ясна и имеет несколько стандартных программ для решения. Гидравлический расчет трубопроводов, особенно сложных, обычно проводится с помощью ЭВМ. Более подробно обсуждаемый вопрос целесообразно изучать на практических занятиях путем решения задач.  [c.137]


Если при движении газа по трубам вследствие теплообмена с окружающей средой температура по длине не изменяется, то имеет место изотермический процесс (Т=соп81). При этом внутренняя энергия в сечениях трубопровода остается постоянной. Уравнение Бернулли при изотермическом течении газа имеет такой же вид, как и для несжимаемой жидкости, за исключением того, что в сечениях потока разная плотность  [c.75]

Это кажущееся несоответствие определяется тем, что уравнение импульсов в форме (2. 32) пригодно только для цилиндрической трубы, когда по уравнению Бернулли для несжимаемой жидкости скорость течения постоянна и изменение давления Ар=0. При течении по трубопроводу переменного сечения произвести сокращение на S нельзя и уравнение импульсов в форме (2. 32) несправедливо. При интегрировании уравнения импульсов в форме (2. 29) по длине трубопровода переменного сечения в пределах от Si до для случая течения несжимаемой жидкости ( Y = onst) будет получено уравнение Бернулли.  [c.39]

ДИФФУЗОР в гидроаэромеханике, участок проточного канала (трубопровода), в к-ром происходит торможение потока жидкости или газа. Поперечное сечение Д. может быть круглым, прямоугольным, кольцевым, эллиптическим, а также несимметричным. По своему назначению и теом. форме Д.— устройство, обратное соплу. Вследствие падения ср. скорости V давление р в направлении течения растёт (см. Бернулли уравнение) и кинетич. энергия потока частично преобразуется в потенциальную. В отличие от сопла, преобразование энергии в Д. сопровождается заметным возрастанием энтропии и уменьшением полного давления. Разность полных давлений на входе и выходе Д. характеризует его гидравлич. сопротивление и наз. потерями. Потерянная часть кинетич, энергии потока затрачивается на образование вихрей, работу против сил трения и необратимо переходит в теплоту. Движение жидкости (газа) в направлении роста давления в потоке, т. е. существование положит, градиента давления в направлении течения,— осн. отличит. свойство Д.  [c.176]


Смотреть страницы где упоминается термин Уравнение Бернулли для течения жидкости в трубопроводе : [c.460]    [c.692]   
Смотреть главы в:

Кузнечно-штамповочное оборудование  -> Уравнение Бернулли для течения жидкости в трубопроводе



ПОИСК



283 — Уравнения жидкости

Бернулли

Течение в жидкости

Течение по трубопроводам

Уравнение Бернулли

Уравнение трубопровода



© 2025 Mash-xxl.info Реклама на сайте