Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Периодические решения, полученные качественными методами

Исследование процесса развития регулярных волновых течений из малых возмущений и устойчивости этих течений [25, 26] показало, что оптимальные режимы обладают определенными преимуществами перед другими и с наибольшей вероятностью реализуются в эксперименте. В этих работах применялся прямой метод для исследования волновых режимов. Форма профиля скорости в поперечном сечении задавалась заранее, затем из полной краевой задачи, описывающей течение жидкости, выводилась система нелинейных уравнений для формы поверхности и локального расхода жидкости. Были получены нелинейные периодические решения этой системы, соответствующие волновым движениям. В работе [27] методом Крылова—Боголюбова (см. [28]) уравнение для возмущения, полученное после задания параболического профиля скорости, решено в первом приближении. По существу, это один из возможных частных случаев более общего решения работы [25], где исчерпаны возможности применения прямых методов к отысканию волновых режимов. В другой работе [29] выявлена возможность существования некапиллярных волн на поверхности тонкого слоя вязкой жидкости. Пока найдено только качественное согласие теоретического профиля гравитационной волны с экспериментальным.  [c.8]


Состояние учения о свободной конвекции в настоящее время таково, что многие стационарные задачи имеют точные или приближенные аналитические решения. Среди аналитических работ преобладают исследования ламинарных потоков, возникающих при свободной конвекции. Труднее математической обработке поддаются вопросы свободной конвекции при турбулентном течении в пограничном слое. В этом случае, как и в случае ламинарного режима, для описания теплообмена в условиях свободной конвекции применяются методы теории подобия с широким использованием эксперимента. Изучение вопросов нестационар- ной свободной конвекции имеет также большое значение. Одним из важнейших вопросов теории нестационарного теплообмена в условиях свободного движения является вопрос о влиянии вибраций на конвективные процессы. Вибрационный эффект, создаваемый или перемещением нагретой поверхности в окружающей среде или подводом возмущений в виде акустических или других периодических колебаний к самой среде, может изменить теплоотдачу в несколько раз. Такое изменение теплоотдачи позволяет качественно по-другому подходить к решению новых задач в условиях естественной конвекции, и в настоящее время обширные исследования посвящены этому вопросу. Получить общее аналитическое решение задачи не всегда удается, поэтому большинство работ посвящено экспериментальному и аналитическому исследованию частных случаев.  [c.143]

Так, в задаче об отыскании периодических решений системы (3) в резонансном случае при построении итерационного процесса с начальным приближением жо можно получить в последовательных приближениях непериодические (секуляр-ные) члены, что очень затрудняет исследование качественного поведения решений. С другой стороны, нельзя надеяться получить периодическое решение исходя из произвольного начального вектора Жо- Суш,ность большинства методов получения периодических решений с помош,ью последовательных приближений состоит в таком выборе вектора жо, чтобы секулярные члены в итерациях не появлялись [2].  [c.407]

Вводные замечания. Задача трех или большего числа тел считается по справедливости одной из самых знаменитых проблем в математике. Тем не менее, до недавнего времени весь интерес в этой проблеме был направлен на формальную сторону вопроса и в частности на формальное решение посредством рядов. Пуанкаре был первым, получившим блестящие качественные результаты, касающиеся в особенности специального предельного случая так называемой ограниченной проблемы трех тел , рассмотренной впервые Хиллом. Что касается общей проблемы, то главные результаты, полученные Пуанкаре, следующие во-первых, он установил существование различных типов периодических движений методом аналитического продолжения во-вторых, он показал, что в силу самой структуры дифференциальных уравнений проблемы тригономстричсскис ряды могут быть полезными, и, наконец, в-третьих, он указал на пригодность этих рядов, как асимптотических. Все эти результаты остаются справедливыми не только для проблемы трех тел, но и для всякой гамильтоновой системы. К несчастью, в его исследованиях всегда имеется вспомогательный параметр //, причем при /X = О система будет специального интегрируемого типа. Таким образом, возникающие трудности (по крайней мере, отчасти) более зависят от особой природы интегрируемого предельного случая (когда два из трех тел имеют массу 0), чем присущи самой проблеме.  [c.259]



Смотреть главы в:

Справочное руководство по небесной механике и астродинамике Изд.2  -> Периодические решения, полученные качественными методами



ПОИСК



Методы качественные

Получить, метод

Решение периодическое

Решения метод



© 2025 Mash-xxl.info Реклама на сайте