Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

НЕПРИВОДИМЫЕ ПРЕДСТАВЛЕНИЯ и векторные пространства пространственных ГРУПП

Неприводимые представления И векторные пространства пространственных групп  [c.79]

Обратимся теперь к содержанию последующих глав 4 и 5. Каждая пространственная группа содержит нормальную подгруппу трансляций Поскольку группа X абелева (в действительности является прямым произведением трех циклических групп), ее неприводимые представления и неприводимые линейные векторные пространства одномерны. Неприводимые представления характеризуются волновым вектором к и бло-ховским вектором [21]. Набор допустимых значений к заполняет первую зону Бриллюэна кристалла и характеризует все неприводимые представления группы 3 .  [c.49]


В заключение укажем общую схему. Для любой физической величины, которая преобразуется ковариантно при общих поворотах, нужно сначала найти представления группы , т. е. пространственной группы, по которой преобразуются компоненты ковариантной физической величины. Чтобы в разлол<ении этой физической величины по нормальным координатам возникло некоторое конкретное произведение, необходимо, чтобы это конкретное произведение содержало линейное векторное пространство, соответствующее тем же представлениям группы , что и при преобразованиях коварианта как целого. Так как нормальные координаты, согласно (86.30), являются базисом для неприводимого линейного векторною пространства, во всех случаях, чтобы выбрать конкретное произведение, нужно использовать правила приведения обычного и симметризованного произведений матриц и степеней неприводимых представлений пространственных групп.  [c.350]

В главах 2—7 и 9 излагается теория пространственных групп. В гл. 2 дается описание структуры кристаллических пространственных групп как групп симметрии трехмерного пространства кристалла. Особое внимание уделяется математической структуре кристаллических пространственных групп. Мы не приводим полного описания 230 пространственных групп, так как оно вместе с иллюстрациями имеется в литературе. В гл. 3 дается обзор стандартного материала по теории представлений конечных групп. Хотя этот материал широко известен, он необходим нам как основа для изложения теории представлений пространственных групп. В гл. 4 излагается теория представлений группы трансляций Неприводимые представления групп трансляций кристалла играют центральную роль в теории, поэтому важно рассмотреть их надлежащим образом, а также правильно ввести понятие первой зоны Бриллюэна. Далее в гл. 5 дается детальный вывод построения и свойств неприводимых предста влений и векторных пространств кристаллической пространственной группы . Этот материал оказывается центральным для характеристики собственных функций и собственных значений при их классификации по симметрии. Рассмотрение в главах 6 и 7 посвящено определению коэффициентов приведения для пространственных групп. Эти коэффициенты приведения являются основными входящими в рассмотрение величинами при определении правил отбора. С математической точки зрения они являются коэффициентами рядов Клебша — Гордана в разложении прямого произведения неприводимых представлений двух пространственных групп.  [c.19]



Смотреть страницы где упоминается термин НЕПРИВОДИМЫЕ ПРЕДСТАВЛЕНИЯ и векторные пространства пространственных ГРУПП : [c.367]    [c.377]   
Смотреть главы в:

Пространственная симметрия и оптические свойства твёрдых тел Т.1  -> НЕПРИВОДИМЫЕ ПРЕДСТАВЛЕНИЯ и векторные пространства пространственных ГРУПП



ПОИСК



Векторные

Группа неприводимое представление

Неприводимость представления

Неприводимые представления

Неприводимые представления пространственных групп

Представление группы

Пространственные группы

Пространство векторное

Пространство представлений



© 2025 Mash-xxl.info Реклама на сайте