Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Параметрический резонанс в системах со многими степенями свободы

В разд. 2.32 мы видели, что при полуклассическом рассмотрении взаимодействия излучения с атомными системами, которые не связаны ни между собой, ни с какой-либо другой системой, возникают специфические трудности. Например, приходилось исключать все случаи, в которых частота некоторой компоненты поля излучения или какая-нибудь суммарная или разностная частота попадает в (острый ) резонанс с одной из частот переходов. [При последовательном квантовом описании удается избежать возникновения таких проблем путем автоматического учета различных механизмов затухания, например радиационного затухания (ср. пп. 3.111 и 3.112).] Указанным способом при применении результатов разд. 2.32 можно трактовать процессы, свободные от потерь (ср. разд. 2.23), такие как генерация высших гармоник и параметрические эффекты вне областей резонанса, но не многофотонное поглощение или излучение или вынужденное комбинационное рассеяние. Поэтому важно расширить модели таким образом, чтобы они позволяли правильно учесть ограниченную память атомной системы и были применимы для исследования резонансных эффектов (ср. разд. 2.31). С точки зрения уменьшения расчетных трудностей весьма целесообразными оказались модели, в которых взаимодействие всех отдельных атомных систем между собой и с другими системами со многими степенями свободы не учитывается в явном виде. Вместо такого учета в уравнения для отдельной атомной системы вводится глобальный механизм потерь в виде связи с тепловым резервуаром . Такой подход мы уже описали в разд. В2.27 и 2.24, и теперь мы можем непосредственно воспользоваться полученными там результатами. При этом мы обсудим наиболее подробно вычисление восприимчивостей первого порядка, а затем обобщим результаты на высшие порядки.  [c.238]


Параметрический резонанс в системах со многими степенями свободы  [c.197]

В настоящем параграфе проведен аналогичный анализ поведения собственных чисел линейных симплектических преобразований фазового пространства любого числа измерений. Результаты этого анализа (принадлежащего М. Г. Крейну) применяются при исследовании условий возникновения параметрического резонанса в механических системах со многими степенями свободы.  [c.197]

Выражения (5.89) совпадают с аналогичными выражениями, полученными в работах [4, 12, 98] методом разложения в ряд по малому параметру решения исходного уравнения и преобразованием Лапласа. Преимуществом изложенной методики является то обстоятельство, что она без принципиальных трудностей переносится на системы со многими степенями свободы, нелинейные системы и позволяет определить требуемые вероятностные характеристики обобщенных координат. При этом охватывается случай исследования устойчивости динамических систем, содержащих перекрестные нелинейные связи. Отметим, что при Sj ( 2) = onst результаты совпадают с данными работы [108]. Исследование частных случаев (5.73) в детерминированной постановке задачи для комбинационного резонанса описано во многих работах [10, 19, 95 и др. ]. Приведенные выше результаты показывают, что, как и в детерминированном случае, спектр частот, при которых возникают параметрические колебания, состоит из ряда малых интервалов. Длины этих интервалов зависят от амплитуды возмущений и стягиваются к нулю, когда амплитуда стремится к нулю. При этом возрастание амплитуды колебаний системы происходит по показательному закону. Выражение (5.89) в этом случае определяет степень опасности комбинационного резонанса, когда спектральные плотности параметрических возмущений соответствуют, например, сейсмическим воздействиям в виде многоэкстремальных функций несущих частот, что особенно часто встречается на практике.  [c.219]

Дальнейшее усложнение динамики генерации происходит для многомодовых лазеров, которые являются динамическими системами с числом степеней свободы, равным числу генерируемых аксиальных мод. При этом возникают не только резонансы на частотах отдельных мод, но и па параметрических частотах из-за их взаи.мо-действия. Это еще больше усложняет временную структуру излучения лазера и затрудняет получение стационарной генерации много-  [c.200]



Смотреть главы в:

Математические методы классической механики  -> Параметрический резонанс в системах со многими степенями свободы



ПОИСК



Много резонансов

Резонанс

Резонанс параметрический

Ряд параметрический

Системы со многими степенями свободы

Степени свободы системы

Степень свободы



© 2025 Mash-xxl.info Реклама на сайте