Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тепловые напряжения в пластине постоянной толщины

Таким образом, допустимо при расчете, как это рекомендуется в нормах [4], рассматривать узел соединения патрубка с примыкающей частью корпуса как осесимметричную составную конструкцию из оболочки переменной формы, сопряженной с пластиной постоянной толщины. При правильном учете переменной толщины стенки патрубка и радиусного перехода к пластине напряженное состояние в нем от силовых нагрузок может быть достаточно точно определено методом конечных элементов с использованием формул теории тонких оболочек и пластин [5]. Однако, так как основание патрубка выполнено из углеродистой стали, а приваренная к основанию втулка — из нержавеющей стали, имеющих различные коэффициенты теплового расширения, в зоне сварного шва возникает объемное термоупругое напряженное состояние, которое должно определяться методами теории упругости или экспериментально. Для этой цели при осесимметричном температурном поле наиболее удобен метод механического моделирования термоупругих напряжений по заданному температурному полю [6].  [c.127]


В 5.3 излагается теория тепловых напряжений в круглой пластине постоянной толщины при осесимметричном, антисимметричном и циклически-симметричном температурных полях. В случае осесимметричного температурного поля устанавливается аналогия между задачей о плоском термоупругом напряженном состоянии пластины и задачей о тепловом ее изгибе. В качестве примера рассматривается задача о тепловых напряжениях в круглой  [c.137]

Тепловые напряжения в пластине постоянной толщины  [c.145]

Пр и мер 1. Рассмотрим тепловые напряжения в круглой сплошной пластине постоянной толщины, обусловленные стационарным осесимметричным температурным полем  [c.151]

Схема экспериментальной установки Л. 4], предназначенной для исследования критического теплового потока при кипении воды и различных спиртов при давлении от 1 до 60 бар, показана на рис. 4-7, Она представляет собой горизонтальный цилиндрический барабан 1, с одного конца которого приваривается днище 2, а с другого фланец 3. Внутри барабана, залитого исследуемой жидкостью (8—9 л), помещается калиброванная нихромовая проволока диаметром 1 мм. или пластинка 5 длиной 150 мм с толщиной 0,1 — , Qmm и шириной 3-—10 мм. Пластина устанавливается на внутренней стороне крышки барабана 4 на ребро или на широкую грань в горизонтальной плоскости. При установке пластины на широкую грань нижняя поверхность покрывается парафином или тефлоном. Кипение жидкости в этом случае происходит только на поверхности, обращенной вверх. При отсутствии указанного покрытия кипение имеет место на обоих поверхностях пластины. Питание пластины производится от низковольтного двигатель-генератора постоянного тока 6 через вводы 7. Для измерения падения напряжения на расстоянии 8—10 мм от оплавленных концов пластины 5 приварены четыре провода. Концы пластины оплавляются латунью во избежание нагревания в контактах и местах перехода. Электрические провода выводятся от пластины наружу через штуцера 9 в крышке барабана.  [c.240]

Электрические методы обогрева подразделяются на прямые и косвенные. При прямых методах обогрева электрический ток пропускается непосредственно по телу модели (трубы, пластинь[, ленты рис. 6.22). Этот метод позволяет получать любые требуемые плотности теплового потока q . на поверхности теплообмена (стенке). Наиболее просто реализуется граничное условие = onst, для чего используют трубки или ленты с постоянной толщиной стенки и малыми температурными коэффициентами электрического сопротивления. Заданный закон распределения можно реализовать, применив профилирование толщинь[ стенки. Для обогрева используется переменный ток промышленной частоты от трансформаторов низкого напряжения или постоянный от генераторов низкого напряжения.  [c.391]


Данная работа проводилась на установке, которая представляла собой вертикальный цилиндрический сосуд со съемной крышкой и выносным конденсатором. В съемной крышке смонтированы четыре токовво-да. Два из них служили для электропитания опытного участка, два других являлись потенциальными выводами. Сосуд установки был окрз жеи слоем тепловой изоляции и имел охранный нагреватель. В стенках корпуса диаметрально противоположно вмонтированы два циркониевых стекла марки ЛК-5. Съемка проводилась в проходящем свете камерой СКС-1М. С повышением давления размеры пузырей, отрывающихся от поверхности, резко уменьшались (при ps =100 бар >отр ==0,2 мм). Для получения увеличенных изображений использовался телеобъектив с набором насадочных колец, что позволило получать различную степень увеличения (максимальное увеличение 2,5 раза). Опытный участок представлял собой изогнутую под прямым углом пластину из серебра 99,99% толщиной 0,2 мм и шириной 2 мм, поставленную на широкую грань. Нагрузка на пластине создавалась постоянным током низкого напряжения. При съемке в поле зрения попадали одновременно горизонтальный н вертикальный участки. Перед проведением опытов экспериментальный участок обрабатывался пастой ГОИ и обезжиривался кашицей венской извести. После такой обработки чистота поверхности соответствовала 86 классу по ГОСТ 2789-51. В качестве рабочей жидкости использовалась обессоленная вода солесодержанием 0,2—0,5 г/ж . Для получения чистых теплоотдающих поверхностей во всем диапазоне исследованных давлений принимались меры, описанные в [101.  [c.156]

Если оболочка подвержена только тепловому воздействию и свойства ее материала одинаковы в направлениях, касательных к срединной поверхности, то полные деформации также будут одинаковы в этих направлениях. В частности, для круговой цилиндрической оболочки в (5.39) Ёфф = 8гг И ДЛЯ КЗЖДОГО ЗНЗЧеНИЯ Лз справедливо е ф = и фф = В этом случае в каждом слое оболочки (не только цилиндрической) возникает двухосное напряженное состояние с равными напряжениями в любых двух ортогональных направлениях. Для такого напряженного состояния r = сг , еС ) = а (1 х)/Е и = 2 , где а, (") и — одинаковые для всех направлений напряжение, упругая и неупругая деформации. Тогда напряженно-деформированное состояние участка оболочки с постоянным по толщине значением полной деформации е не будет зависеть от кривизны срединной поверхности и может быть найдено так же, как для неравномерно нагретой (или многослойной) пластины с использованием условий h  [c.207]

Анализ зависимостей (IX.117) показывает, что при действии юдиородиого теплового потока на бесконечности мембранные напряжения около трещины в оболочке всегда меньше соответствующих напряжений в пластине, находящейся в аналогичных с оболочкой условиях, причем минимальные напряжения возникают в сферической оболочке, а максимальные — в оболочке отрицательной гауссовой кривизны (Р1Р2 == — 0,5). Следовательно, здесь наблюдается противоположный эффект по сравнению со случаем нагрузки при действии на оболочку с теплоизолированными боковыми поверхностями температурного поля, постоянного по толщине, кривизна оболочки уменьшает интенсивность мембранных температурных напряжений около вершины термоизолированной трещины.  [c.300]


Смотреть страницы где упоминается термин Тепловые напряжения в пластине постоянной толщины : [c.53]   
Смотреть главы в:

Основы термоупругости  -> Тепловые напряжения в пластине постоянной толщины



ПОИСК



АБ при постоянном напряжени

Напряжение постоянное

Пластина Напряжения



© 2025 Mash-xxl.info Реклама на сайте