Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Физические модели взаимодействия газа с поверхностью

Физические модели взаимодействия газа с поверхностью  [c.149]

Модели нагружения. Эти модели содержат схематизацию внешних нагрузок по координатам, времени, а также по воздействию внешних полей и сред. Силовые нагрузки, действующие на конструкции, можно разделить на три группы 1) объемные или массовые силы 2) поверхностные силы 3) сосредоточенные силы. Объемные нагрузки действуют на каждую частицу внутри тела. К таким нагрузкам относятся собственный вес конструкции, силы инерции, силы магнитного притяжения и т.п. Поверхностные нагрузки распределены по значительным участкам и являются результатом взаимодействия различных конструктивных элементов одного с другим или с другими физическими объектами (например, давление жидкости или газа на стенки сосуда, давление ветра на оболочку градирни и т.п.). Если силы действуют на небольшую поверхность конструкции, то их можно рассматривать как сосредоточенные нагрузки, условно приложенные в одной точке. По характеру действия нагрузки можно разделить на статические и динамические. Статическая нагрузка возрастает от нуля до своего номинального значения и остается постоянной во время эксплуатации конструкции. Переменное, или динамическое, нагружение — нагружение, изменяющееся во времени. Часто встречающимся видом переменного нагружения являются циклические нагрузки, характеризующиеся периодическим изменением значения и/или знака. Модели нагружения должны учитывать воздействие полей и сред. Наиболее существенным является воздействие температурного поля. Изменение температуры элементов конструкций вызывает температурные деформации. Если они не удовлетворяют уравнениям совместности деформаций, то в элементах конструкций возникают температурные напряжения, значения которых часто оказываются соизмеримы со значениями напряжений, возникающих от воздействия внешних сил. Кроме того, изменение температуры влияет на механические характеристики конструкционных материалов. В некоторых случаях приходится учитывать влияние нейтронного облучения, электромагнитного поля, воздействие коррозионных сред.  [c.401]


Определение аэродинамических коэффициентов крыла (или его профиля) при продувках моделей в аэродинамических трубах может производиться либо с помощью аэродинамических весов, либо путем измерения давления на обтекаемой поверхности. Такое измерение давления и нахождение его распределения является одним из наиболее распространенных экспериментов, позволяющим не только определить соответствующие аэродинамические коэффициенты, но и изучить физическую картину обтекания. Без этого изучения нельзя успешно решать задачи управления процессами взаимодействия между газом и движущимся в нем летательным аппаратом, в частности задачи о наивыгоднейшей форме крыльев и профилей с заданными аэродинамическими свойствами.  [c.154]

Материал, изложенный в разделах 1 и 2, показывает, чго теоретические исследования взаимодействия газа с поверхностью чрезвычайно трудны из-за сложности явлений, происходящих на поверхности. Даже если ограничиться линейными граничными условиями вида (1.6) с не зависящим от / ядром, то все равно мы сталкиваемся с необходимостью найги / ( —> ). Общие рассуждения могут привести лишь к установлению ограничений на это ядро, таких, как закон взаимности (3.9) чтобы достичь большего, нужно построить физическую модель поверхности и постараться вычислить соответствующее ядро R V— %).  [c.137]

Физически спадающая к центру частицы осциллирующая поверхностная релаксация связана с фриделевскими осцилляциями плотности вырожденного электронного газа. Осцилляции Фри-деля вызываются любыми дефектами, нарушающими трансляционную симметрию кристалла в данном случае таким двумерным дефектом является поверхность. Фриделевские осцилляции передаются решетке через электрон-фононное взаимодействие и приводят к изменению межплоскостных расстояний. Согласно [270], в модели свободных электронов амплитуда фриделевских осцилляций убывает по мере удаления от поверхности. Необходимо заметить, что в зависимости от параметров решетки и размера кристалла поверхностная релаксация может не только уменьшать, но и увеличивать его объем.  [c.78]


Смотреть страницы где упоминается термин Физические модели взаимодействия газа с поверхностью : [c.193]    [c.36]   
Смотреть главы в:

Теория и приложения уравнения Больцмана  -> Физические модели взаимодействия газа с поверхностью



ПОИСК



Взаимодействие поверхностей

Модель взаимодействий

Модель физическая



© 2025 Mash-xxl.info Реклама на сайте