Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Реакции в газовой фазе Химическое равновесие в газах

Применение катализаторов. Многие из реакций осуществляются в полной мере только в присутствии катализаторов. Допустим, что реакция протекает в газовой фазе. Для того, чтобы эта реакция была обратимой, например, при постоянных Г и 1/, произведем вначале с помощью полупроницаемых перегородок обратимое смешение реагирующих газов, после чего, добавив к смеси небольшое количество катализатора (или внеся его в смесь на малое время), вызовем реакцию между достаточно малыми количествами реагирующих веществ. Повторяя эту манипуляцию много раз, можно осуществить квазистатический, т. е. обратимый, переход к состоянию химического равновесия через ряд состояний равновесия смеси газов, каждое из которых отличается от химически равновесного.  [c.311]


Напомним, что результаты гл. 7, в которой рассматривалось влияние диссоциации на сжимаемый турбулентный пограничный слой, указывают, что при условии, что стенка является каталитической для процесса рекомбинации, теплопередача к стенке остается сравнительно нечувствительной к тому, происходит ли рекомбинация внутри пограничного слоя (химическое равновесие в пограничном слое в этом отношении является экстремальным) или на поверхности (замороженный пограничный слой с равновесной диссоциацией на стенке— второй предельный случай для скоростей химических реакций газов). Аналогичный результат был получен для случая ламинарного пограничного слоя, рассмотренного в гл, 4. Эти результаты означают, что по крайней мере для одной химической реакции в газовой фазе, — процесса диссоциации, — теплопередача к стенке  [c.295]

При сварке расплавленный металл активно взаимодействует с окружающей газовой средой и флюсами, нагретыми до высоких температур. Процессы взаимодействия протекают с большими скоростями. Однако в связи с кратковременностью существования расплава и вступлением во взаимодействие все новых порций реагирующих фаз большинство реакций в сварочной ванне полностью не завершаются и состояние равновесия не достигается. Металлургические процессы сопровождаются химическими реакциями, которые приводят к окислению, раскислению, легированию сварочной ванны определенными элементами, растворению и выделению в ней газов и др.  [c.25]

Химическая постоянная. Постоянная I в соотношении (4.15а) дает абсолютное значение энтропии идеального газа. Ее называют иногда постоянной давления пара, так как она дает также абсолютное значение давления пара жидкой или твердой фазы. С помощью статистической механики можно получить ее значение, исходя из молекулярной структуры газа. В рамках термодинамики, однако, эта величина представляет собой просто характеризующую данное вещество постоянную, которую следует находить экспериментально. Так как эта постоянная определяет константы равновесия для газовых реакций, ее называют также химической постоянной.  [c.219]

Изготовление различных гетеролазеров требует развития процессов гетероэпитаксиального выращивания большого числа очень тонких слоев твердых растворов, о которых шла речь в предыдущей главе. Методы, используемые для эпитаксиального выращивания полупроводниковых слоев гетероструктур, тесно связаны с химией процесса роста. Для получения требуемых значений электропроводности, достигаемых контролируемым введением примесей, требуется рассмотрение химических равновесий между паром или жидкостью и твердой фазой. Существуют три представляющих для нас интерес метода эпитаксиального выращивания. Выращивание слоев на монокристал-лической подложке из растворов-расплавов металлов в графитовой лодочке, называемое жидкофазной эпитаксией (ЖФЭ), является самым обычным методом получения гетеролазеров. В последнее время развивается техника, в которой пучок атомов и молекул из нагревателей эффузионного типа, расположенных в сверхвысоковакуумной системе, падает на нагретую подложку. Этот метод называется эпитаксией из молекулярных пучков (ЭМП). Химическое осаждение из газовой фазы (ХОГФ) представляет собой эпитаксию, при которой реагенты переносятся в потоке протекающего газа к подложке, на которой происходит осаждение вещества, образуемого по химической реакции. В настоящей главе обсуждаются фазовые равновесия, введение примесей и ростовые методы ЖФЭ, ЭМП и ХОГФ, применяемые для получения гетеролазеров.  [c.86]


Символы А — энергия активации, исходная газообразная химическая компонента В —химическая компонента в виде твердой фазы С — газообразный продукт реакции Ср — теплоемкость при постоянном давлении D —коэффициент диффузии / — безразмерная функция (уравнение (6)) i — э нтальпия /С — константа равновесия —весовая доля газа в смеси k — безразмерная концентрация компоненты газа (уравнение (9)) Le — критерий Льюиса е — компонента твердой фазы т — молекулярный вес т—параметр уноса вещества (уравнение (23)) п — порядок реакции Рг — критерий Прандтля — универсальная газовая постоянная Re = — критерий Рейнольдса /- — теплота реакции  [c.308]

По мере нагревания шихты, загруженной в стекловаренную печь, происходит испарение влаги, диссоциация углекислых и сернокислых солей кальция, магния, натрия, улетучиваются газы, происходят реакции между компонентами шихты, появляется жидкая фаза за счет плавления соды и эвтектических смесей, силикаты и непрореагировавшие компоненты шихты образуют спекшуюся массу. Так протекает первая стадия варки стекла — силикатообразование. Для обычных натриево-кальциевых стекол эта стадия завершается при 800—900° С. Далее, при более высоких температурах спекшаяся масса плавится, окончательно завершаются реакции силика-тообразования, происходит взаимное растворение остатков кремнезема и силикатов. Так протекает вторая стадия варки стекла — стеклообразование. К концу этой стадии при температуре 1150—1200° С появляется прозрачная стекломасса, пронизанная множеством газовых пузырей и неоднородная по химическому составу (негомогенная). При повышении температуры до 1400— 1500° С вязкость стекломассы понижается и газовые пузыри быстро поднимаются на поверхность. Так протекает третья стадия варки стекла — осветление (дегазация). Из стекломассы выделяется избыточное количество газовых пузырей, а между растворенными газами и стекломассой устанавливается равновесие. Поднимающиеся к поверхности пузыри перемешивают стекломассу. Одновременно происходит взаимная диффузия участков стекломассы, различных по составу. Так протекает  [c.490]

В гл. 7, очень неоднородной по содержанию, рассматриваются следующие темы равновесие фаз правило фаз уравнение Дюпре — Ренкина химические константы Нернста тепловая теорема Нернста теоре.ма Нернста в случае газовой реакции теорема Нернста в случае неоднородной химической реакции теплоемкость газов и твердых тел теория разбавленных растворов случай реакции в газовой смеси случай испарения чистого растворителя испарепие и замерзание раствора нелетучих веществ осмотическое давление теплота растворителя в насыщенном растворе соотношение между теплотой и электрической энергией соотношение между электровозбудитель-ной силой и эффекта.ми Томсона и Пельтье лучистая теплота соотношение между лучеиспусканием и поглощение.м давление тепловых лучей закон Стефана закон смещений.  [c.207]


Смотреть страницы где упоминается термин Реакции в газовой фазе Химическое равновесие в газах : [c.27]    [c.296]    [c.65]    [c.453]   
Смотреть главы в:

Термодинамика  -> Реакции в газовой фазе Химическое равновесие в газах



ПОИСК



Газовая фаза

П фазы

Равновесие в реакциях

Равновесие газа

Равновесие газов

Равновесие фаз и химическое равновесие

Равновесие химическое

Реакции в газовой фазе

Реакция химическая равновесие

Химические реакции

Химическое равновесие в газах



© 2025 Mash-xxl.info Реклама на сайте