Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Радиационные измерительные системы

Радиационные измерительные системы  [c.211]

Авторами статьи разработана установка для определения температуры поверхности трения радиационным методом, свободная от перечисленных выше недостатков. Схема измерительного метода изображена на рис. 1. Образец i перемещается по поверхности диска 14 из материала, прозрачного для теплового излучения. Узел трения помещен в камеру, в которой имеется окно 2. Над камерой расположен датчик температуры 10 с приемником теплового излучения 9. Э. д. с. приемника подается на осциллограф 11, имеющий широкополосный усилитель постоянного тока, что обеспечивает практически безынерционное измерение энергии излучения. Тарировка измерительной системы осуществляется внесением в поле зрения датчика протарированной нагретой термопары,  [c.20]


Световое моделирование радиационного теплообмена обладает рядом достоинств, способствующих его применению. Во-первых, сам по себе принцип светового моделирования позволяет исследовать процесс радиационного теплообмена в чистом виде и избежать ошибок, вносимых конвекцией и кондукцией, которые существенно осложняют экспериментальное исследование радиационного переноса на тепловых моделях. Во-вторых, световая модель имеет комнатную температуру, что существенно упрощает все операции экспериментирования и измерения по сравнению с излучающей системой, работающей при высоких температурах. В-третьих, применяемые для регистрации световых потоков измерительные средства могут быть изготовлены с большей чувствительностью и точностью, чем измерительные приборы для теплового излучения. И, наконец, метод светового моделирования является очень эффективным способом для определения как локальных, так и средних коэффициентов облученности. Его использование для этой цели дало хорошие результаты [Л. 27, 156].  [c.298]

Измерительные органы контрольных устройств по способам преобразования измерительного импульса могут быть подразделены на механические, электрические и электронные, пневматические, радиационные и др. Очень часто устройства являются комбинированными системами, использующими несколько видов преобразований. Так, например, электроконтактная, или индуктивная, измерительная головка часто снабжается рычажным увеличителем хода и т. п.  [c.179]

Радиационные системы. Излучение энергии на различных длинах волн может быть использовано для осуществления измерительных преобразований. При исследованиях теплотехнических объектов обычно применяются устройства, воздействующие либо на поток световой радиации, либо на поток проникающего излучения (рентгеновские, у- или Р-лучи). В некоторых случаях оказывается удобным использование вместо световых потоков а-излучения.  [c.116]

Начиная с середины 60-х годов был выполнен большой комплекс работ по натурной тензометрии атомных реакторов при гидропрессовках и во время холодной и горячей обкаток [7, 8, 10, И]. Для этих целей были созданы информационно-измерительные системы высокотемпературной тензометрии (ИИСВТ), включающие термо- и радиационностойкие тензо-резисторы, первичные преобразователи, магнитографы, корреляторы, осциллографы и электронно-вычислительные машины. Эти системы позволили вести измерения напряжений в широком диапазоне частот (до 500— 1000 Гц), уровней напряжений (от 0,01 до 500 МПа), давлений (до 15 МПа), температур (до 300-450 °С), скоростей потоков теплоносителей (до 10-20 м/с) и при радиационных воздействиях (рис. 2.6). Натур-  [c.33]


Подробное описание методики и аппаратуры для проведения измерений спектральной степени черноты изложено в работе [6], поэтому здесь мы остановимся на нем коротко. Схема установки показана на фиг. 3. Трубчатый образец, обогреваемый электрическим током, помещали в вакуумируемую или заполняемую аргоном камеру. Спектр излучения от образца в области длин волн от 1 до 5,5 мкм регистрировали с помощью системы зеркал и инфракрасного спектрометра ИКС-12 с призмой из фтористого лития. Кроме того, на установке можно было измерить яркост-ную температуру излучения образца при длине волны Я = 0,65 мкм с помощью эталонного оптического пирометра ОП-48 и яркостную температуру для полного спектра специальным радиометром интегрального излучения. Можно было также измерить рассеиваемую элементом образца энергию путем измерения силы тока и падения напряжения на образце. Все радиационные измерительные приборы тарировались по черному телу, изготовленному из графитовой трубки, богреваемой электрическим током. Методика измерения спектральных интенсивностей излучения 7°° изложена в работе [6].  [c.124]

При обмывке экранов (радиационного пароперегревателя) пылесланцевого котла ТП-Ш1 (паропроизводительность 640 т/ч, давление пара 14 МПа, поперечные размеры топки 8,7X15 м) водой из дальнобойных аппаратов с линейным перемещением сопла диаметром 20 мм и при давлении воды перед аппаратом 0,3—0,35 МПа максимальный перепад температуры на наружной поверхности трубы не превышает Д м=120—130 К, а среднее значение составляет 92 К [180]. Среднее время достижения максимального перепада температуры на наружной поверхности трубы, начиная с момента соприкосновения ее с водой, составляет примерно То =0,3 с. Расстояние измерительных температурных вставок от выходного сечения сопла при этом было от 9 до 12 м. Максимальные перепады температуры на наружной поверхности экранных труб на котле, сжигающем назаровский бурый уголь П-49 (паропроизводительность одного корпуса 800 т/ч, СКД, поперечное сечение топки 8,2x20 м) при такой же системе очистки и при сопле диаметром 10 мм и давлении воды перед аппаратом 1,0—  [c.211]

Диаграмма растяжения в координатах Р — А/записывается на двухкоординатном потенциометре типа ПДС-021. Нагрев образца осуществляется радиационным методом с помощью вольфрамового пластинчатого нагревателя, охватывающего образец. При нагреве до 2000 К температура образца измеряется термопарами и регистрируется на приборе КСП-4, при нагреве от 2000 до 2300 К — оптическим пирометром типа ОППИР-09. Управление работой всех частей установки и контроль рабочих параметров каждой системы производится с централизованного пульта, который оснащен необходимыми средствами управления, контрольно-измерительными приборами, системой сигнализации и средствами электрозащиты.  [c.124]

В 1999-2001 гг. НПП СибЭРА прошло аккредитацию в Системе экспертизы промышленной безопасности Госгортехнадзора России, имеет аттестованную лабораторию неразрушающих методов контроля, в том числе по ультразвуковому, акустико-эмиссионному, магнитному проникающим веществам, визуально-измерительному, вибродиагностическо-му, вихретоковому, оптическому, радиационному контролю.  [c.335]

В последних трех разделах мы рассмотрим различные типы современных контактных и бесконтактных средств контроля. В контактных методах обычно применяются координатные измерительные устройства. Системы управления больишнства таких современных агрегатов оснащены ЭВМ или другими средствами программного управления. Бесконтактные методы контроля делятся на две категории оптические и неоптические. В оптических методах обычно используются телевизионные системы, хотя применяются и другие средства, например лазерные, а в неоптических методах-электрическое поле для измерения требуемых характеристик объекта. Другие возможные методы измерения-ультразвуковой и радиационный. Различные методы и средства контроля можно классифицировать следующим образом  [c.462]



Смотреть главы в:

Автоматизация механосборочного производства  -> Радиационные измерительные системы



ПОИСК



Измерительная система



© 2025 Mash-xxl.info Реклама на сайте