Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод линеаризации коэффициентов дифференциального уравнения движения

Использованный метод линеаризации коэффициентов дифференциального уравнения движения позволил получить в конечном виде аналитические выражения, определяющие величину увода механизма при сколь угодно сложной структуре последнего.  [c.161]

Для того чтобы отразить эллиптический тип исходных дифференциальных уравнений, давление в (м, и. Я)-системе необходимо определять, решая уравнение Пуассона так же, как это делалось в разд. 3.5. Методы, разработанные для анализа устойчивости решения (г , С)-системы, можно непосредственно применять и для исследования устойчивости решения (ы, и, Я)-системы. При линеаризации уравнений (3.509) члены с градиентом давления исчезают, а члены типа и ди/дх) приводятся к виду й ди/дх), где й — постоянный коэффициент. Тогда линеаризированное уравнение количества движения будет совпадать по виду с линеаризированным уравнением переноса вихря, и, следовательно, для исследования их устойчивости можно использовать одни и те же методы, получая при этом одни и те же условия устойчивости. Решать уравнение Пуассона для давления можно любым из методов, рассмотренных в разд. 3.1 и справедливых также в рассматриваемом случае по крайней мере с точки зрения линейного анализа устойчивости. Уравнениям количества движения можно придать простую консервативную форму, если, как и в случае уравнения переноса вихря, член У-Уи заменить на У-( У). Но применение идеи консервативности в отношении сохранения массы в этом случае осложняется. При решении уравнения Пуассона потребуется отказаться от консервативной формы уравнения неразрывности, в чем мы сейчас и убедимся.  [c.294]


Общая теория малых колебаний материальной точки приводится во всех курсах теоретической механики. Задача обычно сводится к отысканию решения линейного дифференциального уравнения второго порядка с постоянными коэффициентами. Наибольшие затруднения, по-видимому, представляют вопросы, связанные с определением сил,, создающих колебательное движение, а также составление дифференциальных уравнений, определяющих малые колебания. В простейших задачах линейные дифференциальные уравнения в точности описывают механический процесс. В общем же случае эти уравнения являются лишь приближенными и остаются справедливыми только для достаточно малых колебаний. Методы линеаризации уравнений движения остаются и в настоящее время наиболее простым и эффективным средством решения бТ)льшей части технических задач.  [c.48]


Механизмы с упругими связями Динамика и устойчивость (1964) -- [ c.163 ]



ПОИСК



Движение дифференциальное

Движение, метод

Дифференциальное уравнение движения

Дифференциальное уравнение, движени

Коэффициент движения

Коэффициент уравнения

Линеаризация

Линеаризация дифференциальных уравнений

Линеаризация уравнений

Линеаризация уравнений движени

Линеаризация уравнений движения

Метод дифференциальный

Метод линеаризации

Метод линеаризации уравнений

Методы Уравнения дифференциальные

Уравнение метода сил



© 2025 Mash-xxl.info Реклама на сайте