Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Другие свойства волокнистых композиций

Другие свойства волокнистых композиций  [c.276]

В волокнистых композициях матрица скрепляет волокна или другие упрочняющие элементы в единый монолит, защищая их от повреждений. Матрица является средой, передающей нагрузку на волокна, а в случае разрушения отдельных волокон перераспределяет напряжения. Кроме того, ее механические свойства опре-  [c.5]

Взаимодействие наиболее эффективно протекает в композиционных материалах в процессе нагрева при их изготовлении, особенно жидкофазными способами, поэтому в ряде случаев предпочитают применять твердофазные технологические процессы, при которых в связи со сравнительно низкими температурами нагрева диффузия в значительной мере замедлена. Уменьшения взаимодействия матрицы с упрочнителем можно добиться разработкой высокоскоростных и низкотемпературных методов изготовления композиционных материалов. К таким методам изготовления композиций, при которых не успевают проходить диффузионные процессы и взаимодействие в такой мере, чтобы повлиять на снижение свойств, относятся взрывное прессование слоистых и волокнистых композиций [12], гидродинамическое горячее прессование [84] и другие методы твердофазного изготовления, например, композиционных материалов с никелевой матрицей, армированной вольфрамовой проволокой. Одним из наиболее прогрессивных методов изготовления композиционных материалов с металлическими волокнами является динамическое горячее прессование, при котором уплотнение волокнистых и слоистых композиций происходит под действием ударной нагрузки в течение долей секунды.  [c.32]


Большое влияние на механические, физические и другие свойства пластмасс оказывает наполнитель. В зависимости от вида наполнителя пресс-материалы (композиции) подразделяются на порошкообразные, или волокнистые, и слоистые. В качестве порошкообразных наполнителей применяют кварцевую или древесную муку, слюду, графит, серу, сажу, хлопок, волокнистый асбест, стекловолокно и другие подобного рода материалы. В качестве слоистых наполнителей — хлопчатобумажную и другие ткани (например, стеклоткань), бумагу, древесный шпон и др. Наполнители не только удешевляют пластмассу, но в ряде случаев повышают ее прочность и оказывают влияние на технологические свойства. В связи с этим технология переработки пластмасс с различными наполнителями имеет существенные отличия.  [c.6]

Свойства композиционных материалов прежде всего определяются свойствами и соотношением исходных компонентов, а также взаимодействием их на границе раздела и свойствами межфазных слоев. Свойства основных классов наполнителей, в том числе волокнистых, описаны в [10—12] дополнительного списка литературы. Хотя выбор наполнителей, используемых в качестве дисперсной фазы для заданной непрерывной полимерной фазы, ничем не ограничивается, на практике для достижения требуемых эффектов определенные наполнители используют в сочетании с одними полимерами чаще, чем с другими. Так, стекло- или асботкани используют в сочетании с полиэфирными смолами чаще, чем силикатные наполнители, которые в свою очередь чаще используют в сочетании с силоксановыми полимерами (табл. 1.5). Оптимальное количество наполнителя может сильно колебаться для различных композиций — от О до 30 масс. ч. стекловолокон на 100 масс. ч. полистирола и от О до 600 масс. ч. некоторых наполнителей на 100 масс. ч. эпоксидных смол.  [c.35]

Материалы, входящие в одну группу обрабатываемости, близки по своему составу, свойствам и агрегатному состоянию, поэтому закономерности их резания одинаковы, а стало быть и близка их обрабатываемость. Это справедливо для всех групп, за исключением пятой группы — пластмасс с волокнистым наполнителем, в которую входя г и материалы, исследованные при обработке резанием и изложенные в настоящей книге. Дело в том, что такие материалы, как высокопрочные стекло-, органо-, боро- и углепластики, имея одинаковую волокнистую структуру, весьма отличаются по своим физико-механическим свойствам (см. п. 1.2), а следовательно, и закономерности их резания не будут, столь близки, как это отмечается для остальных групп обрабатываемости. Поэтому не представляется возможным, исследовав, например, обрабатываемость стеклопластика, перенести результаты, пусть даже с поправочными коэффициентами, на другие материалы этой группы (на боропластик или органопластик). А если учесть еще современную тенденцию создания гибридных материалов, т. е. композиций типа органопластик — боропластик, стеклопластик—углепластик и т. п.,  [c.16]


Испытывали композиционные материалы с матрицами из полиэфирной, поливиниловой и эпоксидной смол, упрочненных стекловолокном и стеклотканью. С одной стороны, однонаправленные волокнистые композиции обладают повышенными прочностными свойствами на сжатие, с другой стороны, что нежелательно, — повышенной теплопроводностью. Для грубой оценки влияния способа армирования сравнивают отношение предела прочности на сжатие к теплопроводности [3].  [c.371]

Композиционные материалы (КМ) совмещают в себе свойства металлов (электро- и теплопроводность, пластичность и др.) и неметаллов (жаропрочность, химическая стойкость, высокая твердость, смазывающие свой-ст ва) [1, с. 48—60 2]. Одни из них представляют собой керамико-металлические композиции (керметы) и изготовляются промышленным способом с использованием методов порошковой металлургии, другие — волокнистые композиционные и дисперсно-отвержденные материалы, которые стали широко известны лишь недавно [1—4].  [c.7]

Oднal o волокнистая микроструктура обычно получается в системах с низкой объемной долей упрочняющей фазы, поэтому прочность таких эвтектик может быть меньше прочности эвтектических композиций с пластинчатой структурой. При почти равных объемных долях упрочняющей фазы для обеспечения требуемых механических свойств, вероятно, более желательна волокнистая микроструктура. С другой стороны, исходя из относительной термической стабильности этих двух видов микроструктуры, более благоприятно пластинчатое строение.  [c.114]

Другим важным компонентом пластмасс -является наполнитель (порошкообразные, волокнистые и другие вещества как органического, так и неорганического происхождения). После пропитки наполнителя связующим получают полуфабрикат, который спрессовывается в монолитную массу. Наполнители повышают механическую прочность, снижают усадку при прессовании и придают материалу те или иные специфические свойства (фрикционные, антифрикционные и т. д.). Для повышения пластичности в полуфабрикат добавляют пластификаторы (органические вещества с высокой температурой кипения и низкой температурой замерзания, например, олеиновую кислоту, стеарин, дибутилфталат и др.). Пластификатор сообщает пластмассе эластичность, облегчает ее переработку. Наконец, исходная композиция может содержать отвер-дители (различные алшны) или катализаторы (перекисные соединения) процесса отверждения термореактивных связующих, ингибиторы, предохраняющие полуфабрикаты от их самопроизвольного отверждения, а также красители (минеральные пигменты и спиртовые растворы органических красок, служащие для декоративных целей).  [c.405]

Комбинированные (композиционные) материалы совмещают в себе свойства металлов (электро- и теплопроводность, пластичность и др.) и неметаллов (жаростойкость, химическая стойкость, высокая твердость). Одни из них представляют собой керамико-ме-таллические композиции (керметы) и изготовляются промышленным способом с использованием методов порошковой металлургии другие — волокнистые композиционные и дисперсно-отвержденные материалы, которые стали широко известными лишь в последнее десятилетие Новым способом получения таких материалов является гальванический, предусматривающий осаждение комбинированных электрохимических покрытий (КЭП) из электролитов с наложением электрического тока или без него. Преимущества способа по сравнению с методами порошковой металлургии следующие  [c.5]

Из других волокнистых материалов в качестве фильтрующего средства ограниченное применение имеет асбест. Специально приготовленное для фильтрации асбестовое волокно обладает адсорбирующими свойствами, необходимыми при очистке растворов от нежелательных растворимых или коллоидных веществ. Высокая стоимость асбеста ограничивает область его применения в качестве фильтрующего материала. Для фильтров с намывным слоем фирма Зейтц (ФРГ) применяет качественный фильтрующий материал в форме мелких хлопьев, легко образующих однородную по составу пульпу при перемешивании в воде или водном растворе. Материал Зейтц представлен композицией измельченных волокон целлюлозы и асбеста. Адсорбционная способность асбеста в совокупности с целлюлозой обусловливает повышенную тонкость фильтрации намывного слоя. Фильтрующие материалы фирма Зейтц выпускает под названиями кристалл-теорит и кристалл-асбест. Отдельные марки кристалл-теорита подразделяются по степени измельчения целлюлозы и асбеста и обозначены номерами О, 1, 2, 3, 5, 7 и 8.  [c.57]


Низкие значения коэффициента теплопроводности газов объясняют то обстоятельство, что всякий теплоизоляционный материал представляет собой композицию твердого тела с воздухом. Именно воздух, находящийся в порах или в полостях, образуемых твердым скелетом , придает материалу свойства плохого проводника тепла с коэффициентом теплопроводности, не намного большим, чем для воздуха. Отсюда ясно, что величина X должна изменяться в одну сторону с так называемым объемным весом материала, т. е. весом единицы объема, фактически занимаемого материалом. Этот объемный вес всегда меньше удельного веса, который мог бы быть измерен в результате спрессовки материала и ликвидации включенных в него пор и полостей. Однако, с другой стороны, увеличение размеров воздушных включений в материал приостанавливает улучшение его теплоизоляционных свойств, поскольку в воздухе начинает формироваться организованное движение и дополнительно к теплопроводности возникает также конвекция. Следует еще иметь в виду, что в передаче тепла по пористому материалу Б большей или меньшей степени принимает участие и теплообмен излучением твердых стенок, замыкающих собой воздушные включения. Поэтому эффективный коэффициент теплопроводности теплоизоляционных материалов не может быть непосредственно выражен через коэффициенты теплопроводности входящих в его композицию составных частей. Заметим также, что отсыревание волокнистого или порошкообразного материала ухудшает его теплоизоляционные качества, так как поры вместо воздуха заполняются водою, коэффициент же теплопроводности воды значительно больше, чем у воздуха. Ухудшение теплоизоляционных качеств сухих материалов наблюдается и по мере их разогревания, так как коэффициент теплопроводности заметно увеличивается при увеличении температуры.  [c.19]

Состав бумаги и свойства волокон. Чтобы уяснить себе значение тех или иных процессов Б. п. и особенности применяемых в нем механизмов, необходимо прежде всего составить себе ясное представление о составе бумажного листа. Примером может служить состав листа белой бумаги весом в 50 г, приведенный в табл. 1. На выработку 1 кг этой бумаги идет ок. 1 кг волокна, получаемого ив 2 кг сырья, 360 г разных дополнительных материалов. Кроме того требуется 2 м чистой воды и 41/2 кг угля для получения пара и энергии, не считая материалов, израсходованных на получение волокна из сырья. Состав бумаги как по волокну, так и по другим употребленным для ее изготовления примесям м. б. крайне различен в зависимости от качества бумаги, ее назначения, а также и местных условий. Фабрикуемые напр, в настоящее время белые бумаги нашего Союза вырабатываются из более простой композиции, чем приведенная в табл, 1. Наша писчая бумага № 6 состоит из одной беленой сульфитной еловой целлюлозы. Еще 40—50 лет назад полагали, что в бумаге волокна держатся благодаря переплетению их между собой, как основа и уток в теьхтиль-ных изделиях позднее для объяснения этой связи установился термин свойлачива-н и е, но он д. б. понимаем лишь в смысле разнообразного во всех направлениях положения волокна в толще бумажного листа. Здесь нет соединения волокон по типу зацепления, как соединяют1. я между собой животные волокна при образовании войлока, так как растительные волокна гладки и не имеют чешуйчатых конусообразных выступов, характерных для волокон животного происхождения. Взаимная связь волокон, составляющих бумажный лист, является следствием или слу-, чайного сплетения между собой тончайших волоконец, вибрирующих в струях волокнистой суспензии, поступающей на сетку бумажной машины, или же в силу соединения (прилипания) между собой набухших коллои-  [c.596]

Композиции на основе модифицированной фенолоанилиноформальдегидной смолы, волокнистого наполнителя (рубленая стеклонить) и других добавок. Характеризуются повышенными механическими свойствами и влагохимстойкостью.  [c.238]


Смотреть страницы где упоминается термин Другие свойства волокнистых композиций : [c.231]    [c.131]    [c.395]    [c.576]    [c.604]   
Смотреть главы в:

Механические свойства полимеров и полимерных композиций  -> Другие свойства волокнистых композиций



ПОИСК



Волокнистость

Волокнистые Свойства

Другие свойства

Композиция

Свойства композиций



© 2025 Mash-xxl.info Реклама на сайте