Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Реальные газы, вода и водяной пар

РЕАЛЬНЫЕ ГАЗЫ, ВОДА и водяной ПАР  [c.47]

В качестве реального газа рассмотрим водяной пар, который широко используется во многих отраслях техники, и прежде всего в теплоэнергетике, где он является основным рабочим телом. Поэтому исследование термодинамических свойств воды и водяного пара имеет большое практическое значение.  [c.34]

Рис. 1.12, Изобары для воды и водяного пара в р, Т-диаграмме 1.4. ТЕРМИЧЕСКИЕ СВОЙСТВА РЕАЛЬНЫХ ГАЗОВ Рис. 1.12, Изобары для воды и <a href="/info/346965">водяного пара</a> в р, Т-диаграмме 1.4. <a href="/info/58616">ТЕРМИЧЕСКИЕ СВОЙСТВА</a> РЕАЛЬНЫХ ГАЗОВ

Приводятся значения параметров состояния и теплоемкости воды и водяного пара при температурах до 1 000 С и давлениях до 1 ООО ат. Изложена сущность теории ассоциации реального газа, положенной в основу вывода уравнения состояния, и даны пояснения к таблицам.  [c.175]

Зависимость между основными параметрами перегретого пара, т. е. между р, v, Т, обычно приводится в таблицах воды и водяного пара и в диаграммах. Это объясняется тем, что для перегретого пара, так же как и для любого реального газа, нет простого и удобного для расчетов уравнения состояния.  [c.173]

Отдел пятый Реальные газы. Водяной пар . Гл. 1 Реальные газы гл. 2 Изменение агрегатного состояния гл. 3 Вода и водяной пар .  [c.345]

В технике широко применяются пары различных веществ воды, аммиака, хлористого метила и др. Наибольшее применение находит водяной пар — реальный газ, являющийся рабочим телом паровых машин. Производство водяного пара для промышленных целей осуществляется в паровых котлах в процессе парообразования при постоянном давлении.  [c.54]

Одна из важнейших характеристик топлива — теплота сгорания Q, которой называется количество тепла, выделяющегося при полном сгорании 1 кг твердого, жидкого или 1 м газообразного топлива. Различают высшую и низшую Q теплоту сгорания. Если при сжигании топлива учитывается тепло конденсации водяного пара, который содержался в топливе и образовался при его сжигании, то теплота сгорания называется высшей. В реальных условиях охладить продукты сгорания до конденсации водяного пара не удается, поэтому введено понятие низшей теплоты сгорания, при которой подразумевается количество тепла, выделяемого 1 кг топлива при его полном сгорании, за вычетом тепла, затрачиваемого на испарение воды, которая содержится в топливе и образуется при сгорании. Для газов, нефтей и нефтепродуктов разница между высшей и низшей теплотой сгорания составляет  [c.98]

Физико-химическое воздействие внешней среды на механические свойства поверхностного слоя металлов и сплавов. Поверхность металла обладает повышенной химической активностью и в реальных условиях неизбежно адсорбирует атомы элементов окружающей среды, покрываясь слоями адсорбированных газов, паров воды и жиров. Слой жира достигает нескольких сот микрон, пленка водяных паров составляет 50—100 слоев молекул. Жировые пленки прочно связаны с поверхностью металла и не удаляются обычными механическими и химическими средствами. После промывки деталей керосином и бензином на поверхности остается слой жиров в 1—5 мкм. Очень тщательной очисткой можно довести толщину слоя жиров до 0,1—0,001 мкм (примерно 100— 10 рядов молекул). Воздействие внешней среды приводит к образованию на поверхности металла различных соединений, прежде всего различных окислов. Они быстро возникают в результате влияния атмосферного кислорода. Толщина наружной пленки в окисляющихся металлах равна примерно 20—100 А (10—20 слоев молекул). Например, окисная пленка в стали равна 10— 20 А, а алюминии — 100—150 А.  [c.51]


Если вершина трещины покрыта слоем продуктов коррозии (оксидов, гидроксидов), то механизм распространения должен быть иным, так как водяные пары будут диффундировать к вершине трещины через слой продуктов коррозии. Математическая интерпретация такого слоя должна привести к уравнению, очень похожему на уравнение (12). Толщина газообразного диффузионного слоя должна быть заменена на толщину слоя продуктов коррозии, соответственно вместо коэффициента диффузии воды через газообразный азот должен быть применен коэффициент диффузии паров воды через продукты коррозии. Так как предполагаемое уравнение после указанного выше преобразования должно быть похожим на уравнение (12), любой механизм из этих двух может быть использован для объяснения результатов, представленных на рис. 41. Те же выводы могут быть сделаны для поверхностной диффузии воды к вершине трещины, где коэффициент диффузии в поверхностном слое и толщина диффузионного слоя по поверхности соответственно меняются с учетом количества газа. Следовательно, не легко выявить, какой процесс реально развивается во время процесса КР высокопрочных алюминиевых сплавов во влажных газообразных средах.  [c.288]

Научно-исследовательские и проектно-конструкторские работы последних 30—35 лет в Советском Союзе [4—24] и примерно 15—20 лет в зарубежных странах показали, что для глубокого охлаждения продуктов сгорания природного газа ниже точки росы весьма эффективны конденсационные контактные (смесительные, пленочные) теплообменники, в которых дымовые газы и нагреваемая ими жидкость (вода, водные растворы различных веществ) непосредственно соприкасаются друг с другом. Большая межфазная поверхность в единице объема и более высокая интенсивность теплообмена в условиях конденсации водяных паров из газов в этих теплообменниках обеспечивают высокое теплонапряжение в аппарате, реальную возможность охлаждения газов до 20—40 °С и практически полное использование физической теплоты продуктов сгорания и значительной части теплоты конденсации содержащихся в них водяных паров при приемлемых габаритных размерах и аэродинамическом сопротивлении агрегатов.  [c.4]

Из всех осваиваемых методов производства тяжелой воды наиболее разработан и практически освоен электролиз воды. Этот метод при использовании газов в сочетании с изотопным обменом водород — водяной пар) является одним из наиболее реальных и перспективных.  [c.598]

Водяным паром называют реальный газ, образующийся при испарении или кипении воды. Водяной пар широко используют как рабочее тело в теплотехнике. Поскольку процессы испарения и кипения жидкости по своей физической сущности несколько различны, введем их определение.  [c.126]

Водяной пар является реальным газом, поэтому все расчеты по нему ведутся с помощью г, 5-диаграммы или специальных таблиц насыщенного водяного пара (табл. 2-1) [20]. В представленной таблице рн и н — соответственно давление и температура насыщения V" — удельный объем пара г —скрытая теплота парообразования г — энтальпия воды 1" — энтальпия сухого насыщенного пара.  [c.83]

Паром называется реальный газ, находящийся в состоянии близком к конденсации. Водяной пар получается при испарении или кипении воды. При кипении температура, кипящей жидкости зависит от давления р . Пар, находящийся над поверхностью кипящей воды, имеет температуру кипения и называется на-сыщенным паром. Насыщенный пар, содержащий капельную взвешенную влагу, называется влажным паром. Доля массы сухого насыщенного пара во влажном паре называется степенью сухости пара и обозначается х. Доля влаги во влажном паре называется влагосодержанием пара (1 —х).  [c.44]

Водяной пар как рабочее тело широко используется в энергетике, на промышленных предприятиях и в быту. На крупных электрических станциях устанавливают преимущественно паровые турбины. На фабрично-заводских предприятиях водяной пар используется как греющее тело в различных теплообменных аппаратах. Наконец, в быту водяной пар применяют для нагрева воды на отопление и горячее водоснабжение. Во всех перечисленных случаях водяной пар следует рассматривать как реальный газ (см. 1-1), поэтому методы расчетов идеальных газов, рас( мот-ренные ранее, для водяного пара непригодны.  [c.32]


Уравнение Казавчинского и его метод исследования термодинамических свойств реальных газов получили применение в ряде исследований, например О. И. Катхе, Исследование методов определения калорических свойств реальных газов по опытным термическим данным (1958) Я. 3. Казавчинский и О. И. Катхе, Уравнение состояния для водяного пара , Я. 3. К а а а в ч и н с к и й и П. М. К е с-с е л ь м а н, Анализ экспериментальных р, V, Т данных воды и водяного пара и графоаналитическое их согласование (1958) и др.  [c.311]

По своим свойствам водяной пар, как и любой другой реальный газ, резко отличается от свойств идеального газа. Это отличие определяется пренсде всего тем, что в водяном паре нельзя пренебрегать силами межмолекулярного взаимодействия и объемом молекул. При тех состояниях, с которыми приходится иметь дело в теплотехнике, водяной пар может переходить в жидкую фазу (вода). Поэтому исследование термодинамических свойств его не может проводиться на основе тех аналитических зависимостей, которые были получены выше для тел, подчиняющихся уравнению состояния газа. Изучение свойств водяного пара проводится другими методами, в основе которых лежит установ.тение экспериментальных зависимостей между отдельными параметрами, характеризующими его состояние.  [c.166]

Из физики известно, что реальные газы при определенных условиях могут быть сжижены или превращены в твёрдое состояние. Иначе говоря, реальные газы являются перегретыми парами определенных жидкостей. В технике широко применяют пары различных веществ воды, аммиака, хлористого метила и др. Наибольшее применение находит водяной пар, который является рабочим телом паровых машин, отопительных и других устройств. Чем ближе газ к переходу в жидкое состояние, тем больше он отклоняется от свойств идеального газа. Уравнение состояния реальных газов, в основу которого были положены представления о молекулярнокинетических свойствах и строении этих газов, было получено в 1873 г. Ван-дер-Ваальсом. Это уравнение имеет вид  [c.13]

Один из приемов создания малосточных ВПУ при одновременном повышении экономичности и экологичности рабочего цикла ТЭС связан с применением устройств для конденсации водяных паров (конденсат используется в качестве исходной воды) из уходящих дымовых газов котлов, работающих на природном газе. Таким устройством является контактный водяной экономайзер со встроенным декарбонизатором, в котором благодаря глубокому охлаждению газов в рабочей насадке при подаче на нее воды с температурой 20— 30 °С происходит конденсация водяных паров, содержащихся в уходящих газах, и использование выделяющегося при этом тепла для нагрева воды до 40—60 °С. По оценке выход воды при эксплуатации реальных энергетических котлов с контактными экономайзерами составляет около 3,5 т на 1 т расходуемого условного топлива (газа). Кроме экономии реагентов и затрат тепла при обработке получаемой воды для добавки в основной цикл или подпитки теплосети, применение установок для конденсации водяных паров из уходящих дымовых газов позволяет повысить коэффициент использования газового топлива на 10—20 %, снизить потерю тепла с уходящими газами, а также уменьшить влажность выбросов, закисление почв в зоне воздействия дымовых газов и тепловое загрязнение окружающей среды.  [c.160]

Между газообразным и парообразным состояниями вещества не существует формальной границы и реальный газ можно рассматривать как высоко перегретый пар, а пар — как газ, находящийся вблизи области насыщения. С качественной точки зрения поведение паров всех веществ одинаково, поэтому все, что рассматривается ниже применительно к водяному пару, в одинаковой мере справедливо для пара любого другого вещества. Однако параметры, при которых происходят качественные изменения, а также количественные зависимости, наблюдаемые при этом, строго индивидуальны. Поэтому ниже рассматриваются пары самого распространенного в природе вещества — воды. Для нее же будут приводиться и численные значения некоторых величин. Следует отметить при этом, что пары воды широко исполь-. зуются во >лногих областях техники и, в частности, в теплоэнергетике.  [c.243]


Смотреть страницы где упоминается термин Реальные газы, вода и водяной пар : [c.123]    [c.336]    [c.161]    [c.68]    [c.306]   
Смотреть главы в:

Основы энергетики  -> Реальные газы, вода и водяной пар



ПОИСК



Вода, водяной пар

Водяной пар

Водяной пар и газы

Реальные газы

Реальный газ



© 2025 Mash-xxl.info Реклама на сайте