Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Статистическое моделирование случайных процессов и полей

Методы моделирования случайных процессов и полей. Метод статистического моделирования (метод Монте-Карло) [18, 41, 53, 138] применительно к моделированию на ЭВМ случайных процессов и полей заключается в решении задачи воспроизведения дискретных последовательностей, имитирующих непрерывные случайные функции с заданными вероятностными характеристиками.  [c.280]


Метод уравнения квазиоптики является наиболее мощным в теории самовоздействия. С его помощью удается осуществить численные и аналитические расчеты задач распространения, исследовать тонкую структуру распределения светового поля в среде, провести статистическое моделирование волновых процессов в случайно-неоднородных средах при достаточно широком диапазоне пространственных частот оптических неоднородностей.  [c.11]

Моделирование гауссовского белого шума. При статистическом моделироаа-нин случайных процессов и полей возникает необходимость в моделировании стационарного дельта-коррелированиого гауссовс кого процесса (/) (белого шума интенсивности s) или его многомерного аналога (х). На ЭВМ можно воспроизводить только усеченный белый шум (i) с конечной дисперсией, спектральная плотность и корреляционная функция которого приведены в табл. 1 Параметр со при моделировании подбирается таким образом, чтобы последовательность = g (mAt) была некоррелированной. Это условие будет выполняться, если выбрать со,. = п/А1, где At — шаг дискретизации. Моделирующий алгоритм при этом имеет вид [18]  [c.281]

Методы задания объектов. При моделировании могут исследоваться процессы в голографических системах с детерминирован-ными и случайными голографируемыми объектами. Для детерминированных объектов способ их цифрового описания задан по определению. Если требуется моделировать случайные объекты и поле на случайных объектах, то для их задания могут использоваться различные методы генерирования псевдослучайных последовательностей на ЦВМ. При этом статистические характеристики этих чисел (закон распределения, корреляционная функция и т. п.) определяются требуемыми статистическими характеристиками поля на случайных объектах. Поле на объекте может в зависимости от характера решаемой задачи задаваться либо в зкспоненциальном представлении через интенсивность и фазу, либо в виде ортогональных компонент. Последний способ удобнее и естественнее при моделировании, однако он часто связан с моделируемыми характеристиками объектов (например, их яркостью и формой поверхности) не Непосредственно, какприэкспоненциальномпредставлении, а опосредованно.  [c.201]

Для рассматриваемой модели оказывается затруднительным построение формул суммирования погрешностей деталей из-за нелинейности исходного уравнения (11.219). Эта нелинейность возникает вследствие того, что текущий размер детали выражает суммарно и погрешность размеров, и погрешность формы, и не-прямолинёйность геометрического места центров поперечных сечений. Между тем существует практическая потребность в определении формул такого рода и, в частности, для расчета математического ожидания, дисперсии, среднего квадратического отклонения, практически предельного поля рассеивания и т. п. Для преодоления этого затруднения может быть использован метод статистических испытаний (Монте-Карло), который является весьма перспективным при моделировании, анализе и расчете точности нелинейных технологических процессов. Для упрощенного решения этой задачи можно ограничиться расчетом вероятностных характеристик двух более простых случайных функций, получаемых из исходной формулы (11.219) путем приравнивания нулю либо выражения Wp os ( — -j-nip , либо г +  [c.438]



Смотреть страницы где упоминается термин Статистическое моделирование случайных процессов и полей : [c.280]    [c.114]    [c.81]    [c.517]   
Смотреть главы в:

Вибрации в технике Справочник Том 1  -> Статистическое моделирование случайных процессов и полей



ПОИСК



Моделирование статистическое

Поле случайное

Случайность

Случайные процессы

Статистические процессы



© 2025 Mash-xxl.info Реклама на сайте