Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уран - ванадий

Фис. 53. Диаграмма состояния ванадии -уран.  [c.500]

В работе [19] исследованы текстурированные поликристалличе-ские образцы урана электролитической чистоты и ряда двойных сплавов урана с молибденом, железом, кремнием, алюминием, ванадием, германием. Выбор легирующих добавок мотивировался критерием растворимости в а-фазе урана и размером атома примеси. Такие элементы, как кремний, германий, молибден, образуют твердые растворы, причем молибден в большей степени, а кремний и германий — в меньшей. Добавки железа и алюминия обладают очень плохой растворимостью в а-фазе. На рис. 123 показано изменение коэффициента радиационного роста урана в направлении [010] в зависимости от температуры облучения для сплавов с различными легирующими добавками. Отличие в исходной текстуре образцов учитывалось путем нормирования коэффициента радиационного роста каждого образца на его индекс роста. Сравнение данных, приведенных на рис. 124, показывает, что добавки молибдена, кремния, германия способствуют подавлению радиационного роста урана. Максимальный эффект наблюдается для сплава урана, содержащего 500 ppm вес. Мо, скорость роста которого при температуре облучения 450° С почти в три раза меньше по сравнению с ураном электролитической чистоты. Добавки ванадия и  [c.195]


Тантал, ниобий, титан, то-.рий, церий, ванадий, уран  [c.529]

Золото, серебро, платина, олово, никель, кобальт Тантал, ниобий, титан, торий, церий, ванадий, уран  [c.369]

Сера S (г). ... Сера Sj (г). . . . Сурьма Sb (т). . Селен Se (т). . . Селен Se (г). . . Селен Se2 (г). . . Кремний Si (т). . Олово Sn (т), белое Олово Sn (т), серое Стронций Sr (т) Теллур Те (т). Торий Th (т). . Титан Ti (т). . Таллий Т1 = а (т) Уран и = а (т). Ванадий V (т). Вольфрам W (т) Цинк Zn (т). . Цирконий Zr (т)  [c.191]

Вольфрам хорошо растворим в алюминии, титане, ванадии, цирконии, платине, осмии, родии и рутении, но почти не растворяется в ртути. Имеют-сй сообщения о соединениях вольфрама с бериллием и теллуром. Вольфрам слабо растворим в тории и уране. Он не образует сплавов с кальцием, медью, магнием, марганцем, свинцом, цинком, серебром и оловом.  [c.152]

Нитрат уранила 300 г/л при расходе 20,8 л/мин поступает на экстракцию. Раствор содержит примеси других металлов, таких, как торий, молибден, ванадий, а также примеси сульфата и ар-сената. Органический раствор представляет 25 %-ный раствор ТБФ в керосине. Экстракция ведется в пульсационной колонне высотой 10,9 м с шестью эквивалентными ступенями при О/В = 4. Соотношение потоков регулируют так, чтобы достигалось насы-282  [c.282]

Ванадий, ассоциированный с ураном, иногда, в зависимости от местонахождения рудного тела, извлекают в качестве побочного продукта при производстве урана, что может быть экономически выгодным. В таком случае, как например, для урановых заводов, расположенных в урановом поясе, технологический процесс рассчитан на производство урана и ванадия. ]Лри кислотное или карбонатном выщелачивании урана растворяется также ванадий, степень извлечения которого 80 % [346].  [c.290]

Наиболее жесткие требования предъявляются к присутствию в уране таких примесей, как гафний, бор, кадмий, редкоземельные элементы (особенно европий, гадолиний, самарий), обладающих очень большими сечениями захвата нейтронов (сотни и тысячи барн). За ними следуют литий, хлор, марганец, кобальт, серебро (их сечения находятся в диапазоне 10—100 б). На порядок ниже (1—10 б) сечения захвата азота, калия, титана, ванадия, хрома, железа, никеля, меди, цинка, ниобия, молибдена, тория, мышьяка, лантана менее значительны сечения захвата (0,1—1,0 б) натрия, алюминия, циркония, кремния, фосфора, серы, кальция, свинца, церия менее 0,1 б — бериллия, углерода, кислорода, фтора и магния.  [c.185]

В ядерно-чистом уране содержание нейтронно-активных примесей (бор, кадмий, редкоземельные элементы и др.) не должно превышать 10 —10- 5%, а таких умеренных поглотителей нейтронов, как железо, кремний, алюминий, ванадий и др.,—10 —10 %. Чтобы обеспечить это условие, необходима очень высокая степень очистки исходного концентрата природного урана. Значения коэффициентов очистки колеблются в пределах от 100 до 1000. Их можно обеспечить только при очень большой селективности процессов очистки и применении чистых реагентов.  [c.185]


К числу ферритообразующих примесей, помимо хрома, относятся алюминий, титан, кремний, ванадий, ниобий, тантал, вольфрам, молибден, цирконий, а также бериллий, цинк, мышьяк, олово, сурьма, литий, уран. Влияние мышьяка на структуру аустенитной стали рассмотрено в работе [25].  [c.105]

Селен Бег (г). Кремний 81 (т) Олово 8п (т), белое Олово 8п (т), серое Стронций 8г (т) Теллур Те (т). Торий ТН (т). . Титан Т1 (т). . Таллий Т1 = а (т) Уран и = а (т). Ванадий V (т). Вольфрам АУ (т) Цинк 2п (т). . Цирконий 2г (т)  [c.191]

Восстановление расплавленных солей щелочными и щелочноземельными металлами Тантал, ниобий, титан, торий, церий, ванадий, уран Фильеры, вакуумная техника, химическая промышленность  [c.104]

Электролиз расплавленных сред Тантал, ниобий, торий, церий, ванадий, уран, цирконий, титан 0,1—10 Фильеры, вакуумная техника, химическая промышленность  [c.104]

Сварка электронным лучом в вакууме. Этим методом свариваются тугоплавкие и химически активные металлы (молибден, вольфрам, тантал, ниобий, цирконий, ванадий, уран и др.) и сплавы, используемые в качестве конструкционных материалов. Способность этих металлов поглощать водород, азот и кислород при сравнительно невысоком нагреве и связанное с этим охрупчивание сварных соединений вызывает необходимость производить их сварку в среде, содержащей минимальные доли примесей этих газов. В связи с высокой температурой плавления и снижением пластичности в результате рекристаллизации металла, используются источники с высокой концентрацией тепла, обеспечивающие эффективное расплавление металла и минимальные размеры зоны термического влияния.  [c.368]

Наибольшим сродством к кислороду отличаются иттрий, торий, гафний, уран, скандий, щелочно- и редкоземельные элементы, титан, цирконий, алюминий, литий. При литье черных, цветных и тугоплавких металлов они действуют как раскислители (восстановители), а на воздухе в состоянии тонкой дисперсности обладают пирофорными свойствами. К металлам с несколько меньшим, но все же значительным сродством к кислороду относятся ванадий, тантал, ниобий, молибден, вольфрам, хром, марганец, цинк, натрий, железо. Слабым сродством к кислороду характеризуются медь, никель, кобальт, свинец, олово, кадмий, висмут, сурьма.  [c.192]

Система уран — ванадий — кислород  [c.260]

Урановое или уран-плутониевое карбидное топливо по сравнению с окисным имеет существенно более высокую теплопроводность, более высокую плотность ядер деления и низкую замедляющую способность, однако химическая совместимость его с наиболее распространенными материалами оболочек, в частности, нержавеющими сталями и цирконием, гораздо хуже. Так, при температуре 1100° С сталь 0Х18Н9Т науглероживается, зона взаимодействия 100 мкм появляется всего через 6 суток, а с цирконием и карбидом циркония карбид урана образует непрерывный твердый раствор. Карбид урана взаимодействует при 1500 С с ванадием и образует жидкую фазу. Карбид урана хорошо совместим вплоть, до температур 1500—1600° С с карбидами тяжелых металлов (ниобия, молибдена, вольфрама, тантала), а также с пиролитическим углеродом и карбидом кремния. Карбидное топливо сравнительно хорошо удерживает продукты деления. Так, скорость утечки газообразных продуктов деления составляет менее 0,1% (скорость диффузии при температуре 1500°С).  [c.10]

Отрицательнее —0,44 в Металлы повышенной термодинамической неустойчивости (неблагородные) Могут корродировать в нейтральных водных средах, даже не содержащих кислорода Литий, рубидий, калин, цезий, радий, барий, стронций, ка.чьций, натрий, лантан, магний, плутоний, торий, нептуний, бериллий, уран, гафний, алюминий, титан, цирконий, ванадий, марганец, ниобий, хром, цинк, галлий, железо  [c.40]

Цирконий, платина и гафний стойки в натрии до температуры 600—700° С, тантал в очищенном от кислорода натрии стоек до температуры 1000° С. Скорость коррозионного процесса бериллия становится значительной, если в натрии содержится 0,01% кислорода. Сурьма, висмут, кадмий, золото, иллий и чугун в натрии нестойки. На уран натрий воздействует только при наличии в последнем кислорода. При этом скорость реакции пропорциональна концентрации кислорода и при температуре 600° С для очищенного от кислорода натрия составляет 30—100 мк1мес. Торий и ванадий стойки в натрии до температуры 590° С. Скорость коррозии этих металлов 0,2 мг/см мес. Ниобий и вольфрам стойки в очищенном от кислорода натрии до температуры 900° С. Для кратковременной работы при температуре 1500° С пригоден молибден. Сварные соединения титана, циркония, ниобия, тантала, молибдена, никеля, выполненные аргонодуговой сваркой, стойки до температуры 800° С.  [c.49]


При проведении обширных исследовании образования соединений тория с титаном, ванадием, хромом, цирконием, ниобием, гафнием и ураном не наблюдалось. Твердые растворы в металлическом тории обнаружены в очень ограниченном количестве систем. Компактный торий обладает некоторой растворимостью ио отношению к углероду, гафнию и урану и значителыюй растворимостью по отношению к цирконию, церию и лаитану.  [c.811]

Ванадий в трехвалентном состоянии не экстрагируется аминами, но пятивалентный ванадий экстрагируется, хотя и в меньшей степени по сравнению с ураном. Алкилфосфорные кислоты экстрагируют одновременно четырех- и пятивалентный ванадий. Уран можно отделить от ванадия, выбрав соответствующие значения pH, отношения фаз и концентрации экстрагента. Для экстракции можно использовать содержащие ванадий нейтральные щелочные и кислые растворы. При водном выщелачивании продуктов солевого обжига образуются нейтральные растворы, тогда как в результате кислотного или карбонатного выщелачивания получаются кислые или щелочные растворы. Ванадий обычнс извлекают окислительным осаждением при р [ 2,54-3,0. Для перевода ванадия в форму гексаванадата натрия (красного кека) применяют хлорат натрия. В результате сушки и последующего прокаливания при 1040 °С получают V2O5. В 1966 г. были известны 290  [c.290]

Размерная нестабильность сплавов урана определяется и их составом [163]. Кальцийтермическ1 й уран и магнийтер-мический уран имеют различные коэффициенты роста. Уран, содержащий алюминий, железо, ванадий, германий, палладий или титан, испытывает при термоциклировании большое формоизмеиеиие, а добавки молибдена, ниобия, платины и хрома уменьшают абсолютную 1 еличину коэффициента роста. Влияние химического состава на формоизменение сплавов урана при термоциклировании проявляется не только в связи с изменением объемного эффекта и уровня физико-механических свойств при переходе от одного типа упаковки к другому, но и с атомным механизмом этого перехода, характером размещения образующихся фаз и др.  [c.52]

Цирконий, как и титан, образует две аллотропические модификации, а-цир-коний кристаллизуется с образованием гексагональной решетки, а высокотемпературная Р-фаза имеет кубическую объемноцентрироваиную решетку. Температура превращения равна 862° С. Водород, марганец, железо, никель, хром, вольфрам, молибден, ванадий, ниобий, тантал, титан, торий и уран снижают температуру превращения. Они являются Р-стабилизаторами. Углерод и кремний ие влияют иа температуру превращения, а-стабилизаторами, повышающими температуру превращения, являются кислород, азот, алюминий, олово и гафний.  [c.104]

При изготовлении дисперсно-упрочненных материалов типа спеченных алюминиевых порошков (САП) путем спекания совместимость алюминия с дисперсным порошком окиси алюминия в определенной степени определяется когерентностью решетки металла и его окиси, однако при таком способе получения жаропрочных материалов существует большая свобода выбора разнообразных упрочняющих фаз для самых различных материалов. Например, дисперсная двуокись тория в равной мере успешно используется для упрочнения меди, кобальта, никеля и их сплавов, циркония, платины, хрома, молибдена, вольфрама и других металлов. Малые добавки дисперсных окислов А 2О3, YgOg, MgO, BeO, ZrO , НЮ и других очень эффективно упрочняют медь, никель и его сплавы титан, цирконий, ниобий, ванадий, хром, уран и другие металлы.  [c.120]

Еще более электроотрицательные хром, молибден, вольфрам со стабильными карбидами титана, циркония, гафния и тория образуют тройные системы, имеющие квазибинарные эвтектические разрезы (Сг, Мо, W) — (Ti, Zr, Hf, Th) — С. Уран (элемент VI группы), образующий более прочный карбид, чем хром, молибден и фольфрам, образует с титаном, цирконием, гафнием и торием системы III типа. Молибден, вольфрам с близкими к ним ванадием образуют системы I, а с более далекими, если учитывать сдвиги по [15], ниобием и танталом — системы II типа. Хром с ванадием и углеродом дает систему II типа, а с ниобием, танталом и углеродом — образует квазибинарный эвтектический разрез. Уран с карбидами ванадия, ниобия, тантала также образует эвтектики.  [c.156]

Молибден с титаном, цирконием, гафнием и азотом образует системы III типа с квазибинарным эвтектическим разрезом MeviMeivN. К III типу должны относиться и все системы (Сг, W, U)—Ti(Zr, Hf, Се, Th)—N. Металлы VI группы с ванадием, ниобием, танталом и азотом должны образовывать системы преимущественно III и иногда II типа. Уран с металлами V группы и азотом должен образовывать системы без квазибинарных эвтектических разрезов U—Меу—N.  [c.160]

В Конго (Африка) имеются весьма богатые месторождения урановой смоляной руды, наиболее крупные из них и важные в промышленном отношении — месторождение в Шинколобве, в провинции Катанга, открытое в 1915 г. Вначале главным применением этих руд было производство радия. В настояш ее время широко развернута добыча урана. Содержание окиси урана в руде здесь достигает 60%. Руда в этом месторождении в основном жильного типа и имеет гидротермальное происхождение. Наряду с ураном в пей содержатся медь, кобальт, никель, ванадий, железо и драгоценные металлы. Урановая руда находится очень близко к поверхности, она прикрыта лишь слоем почвы толщиной в несколько сантиметров, поэтому добыча ее ведется открытым способом.  [c.38]

Новые области применения тугоплавких металлов не ограничиваются сверхзвуковой авиацией и ракетной техникой. Ванадий и ниобий благодаря малому поперечному сечению захвата тепловых нейтронов успешно применяются в ядерной энергетике. Из ванадия изготовляют тонкостенные трубы для атомных реакторов его применяют для тепловыделяющих элементов, так как он не сплавляется с ураном и имеет хорошую теплопроводность и достаточную коррозионную стойкость. Ниобий применяют для изготовления оболочек тепловыделяющихся элементов. Ниобий не взаимодействует с расплавленными натрием и висмутом, которые часто применяют в качестве теплоносителя, и не образует с ураном хрупких соединений.  [c.480]

Положение металла в периодической системе элементов Д. И. Менделеева не характеризует в общем виде стойкость металлов против коррозии главным образом потому, что она зависит не только от природы металла, но и от внешних факторов коррозии. Однако некоторую закономерность и периодичность в повторении коррозионных характеристик металлов наряду с их химическими свойствами в периодической системе установить можно. Так, наименее коррозионно стойкие металлы находятся в левых подгруппах I группы (литий, натрий, калий, рубидий, цезий) и И группы (бериллий, магний, кальций, строиций, барий) наиболее легко пассивирующиеся металлы находятся в основном в четных рядах больших периодов в группах V (ванадий, ниобий, тантал), VI (хром, молибден, вольфрам, уран) и VIII (железо, рутений, осмий, кобальт, родий, иридий, никель, пал-  [c.37]



Смотреть страницы где упоминается термин Уран - ванадий : [c.292]    [c.5]    [c.43]    [c.396]    [c.413]    [c.277]    [c.292]    [c.300]    [c.165]    [c.172]    [c.100]    [c.101]    [c.61]    [c.254]    [c.257]    [c.261]    [c.262]   
Смотреть главы в:

Диаграммы состояния двойных металлических систем Т.3  -> Уран - ванадий



ПОИСК



U03+ ион уранила

Ванадий 273, 275, ЗСО

Ванадит

Силицид ванадия урана

Система уран—ванадий—кислород

Уран

Уранне( ия



© 2025 Mash-xxl.info Реклама на сайте