Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Г айс — Подобные пограничные слои на телах вращения

ПОДОБНЫЕ ПОГРАНИЧНЫЕ СЛОИ НА ТЕЛАХ ВРАЩЕНИЯ  [c.248]

Краткое содержание. Рассматривается образование подобных пограничных слоев на телах вращения во вращающемся потоке, оси которого совпадают с осями тела, или когда жидкость неподвижна, а тело вра-  [c.248]

Интерцептор (рис. 6.3.11) представляет собой тонкую пластину /, которая выдвигается в поток в направлении, перпендикулярном обтекаемой поверхности летательного аппарата. При воздействии на эту пластину сверхзвукового потока возникает следующая картина течения. Ввиду того что перед такой пластиной поток затормаживается, а давление увеличивается, происходит отрыв пограничного слоя от обтекаемой поверхности, который сопровождается поворотом этого потока и появлением косого скачка уплотнения 2. При этом образуется застойная зона повышенного давления 3, а непосредственно перед верхней частью интерцептора возникает криволинейный скачок уплотнения 4. За ним поток повернется в сторону, обратную направлению омывающего течения, а при переходе через волны разрежения 5 произойдет увеличение скорости этого потока и восстановление безотрывного характера обтекания поверхности. Поскольку это приведет к новому повороту потока, то появится еще один (хвостовой) скачок уплотнения 6. За интерцептором также образуется застойная зона 7, но давление в ней будет пониженным, подобно тому как это происходит за дном летательного аппарата в виде тела вращения.  [c.314]


Напротив, на вращающемся теле во вращающемся потоке, оси вращения которых совпадают, или на вращающемся вокруг своей оси тела в неподвижной жидкости имеет место трехмерный (в полном смысле этого слова) пограничный слой. Простейшие случаи таких течений обсуждались ранее, а именно Бёдевадтом [3], рассматривался вращающийся на твердом основании поток, а Кохрэном [4] — вращающийся диск в неподвижной жидкости. Л. Хоуартом [5] недавно была предпринята попытка рассчитать с помощью ряда пограничный поток около шара, вращающегося в неподвижной жидкости. Рассмотрение подобного потока с помощью ряда привело Нигэма [6] к результатам, отличным от результатов Хоуарта. Феднис [7] обобщил основные положения работы [6] на случай вращающегося эллипсоида вращения.  [c.251]

В этой главе рассмотрены вопросы численного интегрирования линейных и нелинейных краевых задач для систем обыкновенных дифференциальных уравнений, возникающих при исследовании прочности, устойчивости, свободных колебаний анизотропных слоистых композитных оболочек вращения после разделения угловой и меридиональной переменных. В предыдущих главах было показано, что корректный расчет таких оболочек и пластин в большинстве случаев требует привлечения неклассических дифференциальных уравнений повышенного порядка. Там же (см. параграфы 4.1, 4.4, 5.2, 6.2) отмечалась важная особенность таких уравнений — существование быстропеременных решений экспоненциального типа, имеющих ярко выраженный характер погранслоев и существенных лишь в малых окрестностях краевых закреплений, точек приложения сосредоточенных сил, мест резкого изменения геометрии конструкции и т.д. Стандартные схемы численного интегрирования краевых задач на таком классе дифференциальных уравнений малоэффективны — попытки их применения встречают принципиальные трудности, характер и формы проявления которых подробно обсуждались в параграфе 4.1 (см. также [136]). Добавим к этому замечание о закономерном характере данного явления — существование решений экспоненциального типа с чрезвычайно большим (по сравнению с длиной промежутка интегрирования) показателем изменяемости в неклассических математических моделях деформирования тонкостенных слоистых систем, дифференциальными уравнениями которых учитываются поперечные сдвиговые деформации, обжатие нормали и другие второстепенные" факторы, естественно и необходимо. Такие решения описывают краевые эффекты напряженного состояния, связанные с учетом этих факторов, и существуют не только у неклассических уравнений, установленных в настоящей монографии, но и в других вариантах неклассических уравнений повышенного порядка, что уже было показано (см. параграф 4.1) на конкретном примере. Болес того, подобные явления наблюдаются не только в теории оболочек, но и в других математических моделях механики и физики. Известным классическим примером такого рода может служить течение Навье—Стокса — при малой вязкости жидкости, как впервые было показано Л. Прандтлем (см., например, [330]), вблизи обтекаемого тела возникает зона пограничного слоя. Такие задачи согласно известной [56, 70 и др.] классификации относятся к классу сингулярно возмущенных, т.е. содержащих малый параметр и претерпевающих понижение порядка, если положить параметр равным нулю. Проблема сингулярных возмущений привлекала внимание многих авторов [56, 70, 173, 190 и др.]. Последние десятилетия отмечены значительными достижениями в ее разработке — в создании и обосновании методов асимптотического интегрирования для различных  [c.195]


Решение уравнения движения для нестационарного ламинарного течения жидкости в каналах ие представляет принципиальных трудностей. Для круглой цилиндрической трубы вдали от входа оно решено для любых начальных условий и заданного закона изменения градиента давления во времени в 1882 г. И. С. Громека. Обзор подобных работ для плоской и круглой труб и решения при ступенчатом и периодическом изменении во времени градиента давления даны в книге Б. С. Петухова [60]. Значительное число работ посвящено теоретическому исследованию нестационарного пограничного слоя. Обзор работ, выполненных до 1959 г., представлен в работе Стевартсона [158]. В работе В. В. Струминского [69] изложена теория ламинарного нестационарного пограничного слоя на профилях произвольной формы и на телах вращения. В работе Янга и Оу [169] с использованием вычислительных машин найдены выражения для профилей скорости и касательного напряжения на стенке во входных участках круглой и плоской труб нри произвольном законе изменения скорости на входе.  [c.44]


Смотреть страницы где упоминается термин Г айс — Подобные пограничные слои на телах вращения : [c.622]   
Смотреть главы в:

Проблема пограничного слоя и вопросы теплопередачи  -> Г айс — Подобные пограничные слои на телах вращения



ПОИСК



Пограничный слой на теле вращения

Тело вращения



© 2025 Mash-xxl.info Реклама на сайте