Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Краевые условия к уравнениям движения и теплопроводности

Система уравнений, описывающих явление теплоотдачи, содержит дифференциальные уравнения энергии, теплоотдачи, движения и сплошности. При этом геометрические условия однозначности определяют форму и размеры поверхности соприкосновения теплоносителя с телом, физические условия — теплопроводность, вязкость теплоносителя и другие свойства, граничные условия — распределение скоростей и температур на границах изучаемой системы. Для некоторых задач теплообмена могут быть получены и более сложные системы дифференциальных уравнений и краевых условий.  [c.157]


Краевые условия к уравнениям движения и теплопроводности  [c.11]

Динамические характеристики важны для создания математических моделей объектов. Особенно при необходимости упрощения последних, возникновении непреодолимых трудностей теоретического определения коэффициентов переноса (эффективной теплопроводности, диффузии и т.п.), химической, сорбционной кинетики, кривых сушки и др. Использование для этой цели системы дифференциальных уравнений сохранения (неразрывности, движения, импульса и диффузии) в частных производных (см. пп. 1.5.1. 1.5.2. 3.5.2 3.18 книги 2 настоящей серии), дополненной уравнениями состояния, фазового равновесия, кинетики и краевыми условиями (см. пп. 7.1.3, 7.4.3, 7.5.1 книги 1 настоящей серии) часто излишне трудоемко или невозможно из-за сложности протекающих в объекте процессов. В этом случае указанные коэффициенты определяют с помощью динамических характеристик, полученных опытным путем на физических моделях, натурных объектах, применяют типовые математические модели тепло- и массообменных аппаратов.  [c.287]

Этой теории соответствуют в общем случае уравнения движения (4.11), (4.12) или равновесия (4.23), уравнение теплопроводности (4.8) (или (4.10)) без первых слагаемых в правой части и краевые условия (4.13)-(4.16). Отметим, что в теории упругих температурных напряжений полагают =  [c.99]

Начнем с простейшего случая таких течений неравномерно нагретой жидкости, при которых температура может рассматриваться как пассивная примесь. В этом случае течение будет описываться обычными уравнениями (1.5) — (1.6) гидродинамики несжимаемой жидкости (с постоянным р), к которым надо добавить уравнение теплопроводности (1.72). Будем для простоты рассматривать только стационарные движения, т. е. считать, что все поля м,, р и не зависят от времени. В уравнения входят два постоянных коэффициента V и х. имеющие одинаковую размерность где Ь и Т — размерности длины и времени. Кроме того, краевые условия при сохранении геометрического подобия будут характеризоваться некоторой длиной Ь, типичной скоростью V и типичной разностью температур Ач — до (например, типичной разностью температур между твердыми границами и жидкостью). Поскольку, однако, температура рассматривается как пассивная примесь, единица для измерения температуры может быть выбрана произвольным образом поэтому мы должны считать, что  [c.54]


НИИ с обобщенным законом вязкого трения Ньютона и законом теплопроводности Фурье, Найденные таким образом уравнения называются уравнением неразрывности, уравнениями движения и уравнением энергии. Эти уравнения, дополненные зависимостями физических свойств жидкости от температуры и давления, составляют замкнутую систему уравнений, описывающую процесс конвективного теплообмена и движения жидкости. Решение этой системы уравнений в сочетании с краевыми условиями позволяет определить зависимости (1-1) или (1-2).  [c.6]

Уравнения теплопроводности (4.8) (или (4.10)) и закон сохранения количества движения (4.11) (или (4.12)) образуют замкнутую систему уравнений классической термоупругости, которые вместе с граничными и начальными условиями для заданной области составляют формулировку краевой задачи.  [c.95]

В общем случае найти аналитическое решение системы весьма аатруднительно. Применение численных методов расширяет воз-мол ности аналитических способов решения. Однако те и другие требуют одинаковых краевых условий, которые в реальных процессах тепло- и массообмена, как правило, представлены не полностью. Физический процесс полностью описывается некоторой системой уравнений и присоединенных к ним краевых условий только в том случае, когда эта система замкнута. Считают, что урав ( ения движения и сплошности допускают автономное решение, так как в совокупности со своими краевыми условиями они составляют замкнутую систему. Система уравнений теплопроводности и диффузии незамкнута. Если, например, известны начальные временные и начальные пространственные краевые условия (параметры сред на входе в аппарат), то, как правило, неизвестны конечные пространственные краевые условия — параметры  [c.38]

Постановка краевых задач теории упругости. Пусть упругое тело занимает трехмерную область V, а 5 представляет собой его поверхность. В каждой точке тела V должны выполняться основные уравнения теории упругости соотношение Коши, уравнение движения (уравнение равновесия для задач статики) и уравнение закона Гука ( в случае техмоупругости вместо закона Гука следует брать его обобщение, данное Дюамелем и Нейманом, и модифицированное уравнение теплопроводности (29.14)). Что же касается краевых условий,то основными являются три класса  [c.112]


Смотреть страницы где упоминается термин Краевые условия к уравнениям движения и теплопроводности : [c.186]   
Смотреть главы в:

Моделирование теплоэнергетического оборудования  -> Краевые условия к уравнениям движения и теплопроводности



ПОИСК



I краевые

Движения условия

Краевые условия к уравнению теплопроводности

Уравнение теплопроводности

Уравнения Условия краевые

Условия краевые



© 2025 Mash-xxl.info Реклама на сайте