Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Защита наложением тока от внешнего источника

Защита наложением тока от внешнего источника  [c.341]

Электрохимическая защита наложением тока от внешнего источника отличается высокой эффективностью (почти до 100 %), возможностью регулировки поляризующего тока и поддержания определенного значения потенциала, Недостатки — высокая стоимость самой установки и необходимость систематического контроля и профилактического ремонта.  [c.285]

В разделе Внутренняя защита резервуаров и аппаратов химической промышленности кроме методов катодной защиты приводятся рекомендации и по применению анодной защиты при наличии материалов, подвергающихся пассивации в соответствующих средах. Наряду с анодной поляризацией наложением тока от внешнего источника для достижения пассивного состояния рассматривается и способ защиты с применением ингибиторов.  [c.14]


К подготовительным мероприятиям относится также определение электрического сопротивления грунта на тех участках, где могут быть расположены анодные заземлители (см. раздел 3.5). На станциях катодной защиты с наложением тока от внешнего источника необходимо также учитывать защитные мероприятия [6]. При сооружении новых хранилищ можно надежно обеспечить полную защиту резервуаров при малой плотности защитного тока и без вредного воздействия на соседние сооружения. При защите существующих старых хранилищ приходится принимать в расчет сравнительно большую плотность защитного тока, зависящую от состояния изоляции самого резервуара и трубопроводов. Однако имеющийся опыт показывает, что даже для старых резервуаров-хранилищ в большинстве случаев можно получить достаточный эффект катодной защиты, хотя и при более высоком уровне затрат на подготовительные мероприятия и на защитные установки, чем при сооружении новых хранилищ.  [c.268]

Катодная защита с наложением тока от внешнего источника для топливозаправочной станции  [c.276]

Катодная защита анодными заземлителями с наложением тока от внешнего источника применяется преимущественно для кабелей за пределами застроенной территории, поскольку только там можно разместить крупные анодные заземлители, не оказав неблагоприятного влияния на другие трубопроводы. В густо населенных районах защита при помощи анодных заземлителей нередко оказывается возможной лишь в ограни--ченных масштабах или на отдельных наиболее опасных участках (защита горячих мест, см. раздел 13).  [c.303]

ТАБЛИЦА п. СВОЙСТВА СИСТЕМ ЗАЩИТЫ ОТ КОРРОЗИИ СООРУЖЕНИЙ, СОПРИКАСАЮЩИХСЯ С МОРСКОЙ ВОДОЙ, С ПРИМЕНЕНИЕМ ПРОТЕКТОРОВ (А) И АНОДОВ С НАЛОЖЕНИЕМ ТОКА ОТ ВНЕШНЕГО ИСТОЧНИКА (Б)  [c.339]

По новым измерениям ожидаемый срок службы протекторов (считая по коррозии их материала на 85 %) должен составить 25 лет. В табл. 17.3 представлены некоторые дополнительные данные о погрузочном причале [16, 17]. В настоящее время погрузочные причалы защищают в основном при помощи станций катодной защиты с наложением тока от внешнего источника.  [c.348]

Рис. 18.5. Схема станции катодной защиты судна с наложением тока от внешнего источника с анодами (Л) и измерительными электродами (М) Л/ блок питания от судовой сети Я—ручной регулятор R — регулятор с управлением по величине потенциала V — магнитный усилитель Т — регулирующий трансформатор G — трехфазный преобразователь (выпрямитель) г, 5, — фазы сети трехфазного тока Рис. 18.5. Схема <a href="/info/39790">станции катодной защиты</a> судна с наложением тока от внешнего источника с анодами (Л) и <a href="/info/28691">измерительными электродами</a> (М) Л/ <a href="/info/294957">блок питания</a> от судовой сети Я—ручной регулятор R — регулятор с управлением по величине потенциала V — <a href="/info/86630">магнитный усилитель</a> Т — <a href="/info/306235">регулирующий трансформатор</a> G — трехфазный преобразователь (выпрямитель) г, 5, — фазы сети трехфазного тока

Аноды с наложением тока от внешнего источника и измерительные электроды должны быть смонтированы очень тщательно. Повреждения изоляции, которые возможны например при сварке, необходимо сразу же отремонтировать. Поверхности анодов и измерительных электродов после монтажа должны быть покрыты водорастворимым клеем и бумагой для защиты от осаждения материала покрытия и от загрязнений. Если после монтажа предусматривается выполнение мероприятий по пассивной защите от коррозии и дробеструйной очистке, то временное покрытие должно иметь достаточную стойкость к соответствующим воздействиям.  [c.368]

Для катодной защиты от коррозии применяют протекторы и наложение тока от внешнего источника. Для Предотвращения слишком сильного выделения водорода диапазон защиты должен быть ограничен до t/fjs =—0,9 В. Обычно нужно учитывать, что при внутренней катодной защите закрытых резервуаров или других установок возможна опасность взрыва, если не обеспечивается достаточно равномерное потребление продукта (проточность) или если не приняты меры для отвода газа из установок.  [c.379]

Различают три возможности анодной защиты применение анодного тока от внешнего источника, формирование локальных катодов и применение пассивирующих ингибиторов. При способе с наложением тока от внешнего источника сначала должны быть определены области защитных потенциалов путем исследования зависимости показателей коррозии от потенциала (см. соответствующие данные в разделах 2.3 и  [c.390]

Способ с наложением тока от внешнего источника, как и в случае катодной защиты, находит весьма разностороннее применение. Однако при затрудненном подводе тока, например в смачиваемых газовых полостях, он оказывается неэффективным. Поскольку при отказе защиты может возникнуть очень большая скорость потери массы металла при активной коррозии, обсуждать применимость этого способа следует только в тех случаях, когда надежно гарантируется распределение защитного тока или когда при активации не может получиться высокой  [c.391]

КАТОДНАЯ ЗАЩИТА С НАЛОЖЕНИЕМ ТОКА ОТ ВНЕШНЕГО ИСТОЧНИКА И ЭЛЕКТРОЛИТИЧЕСКОЙ ОБРАБОТКОЙ ВОДЫ  [c.406]

Для внутренней защиты резервуаров с питьевой водой можно применять только такие аноды (протекторы), анодные продукты реакции которых в воде по своему виду и концентрации не представляют опасности в гигиеническом отношении, По этой причине здесь не могут быть применены протекторы или аноды с наложением тока от внешнего источника, содержащие токсичные элементы, например алюминиевые протекторы, активированные ртутью, или протекторы из сплава свинца с серебром (см. разделы 7 и 8). В качестве протекторов для резервуаров с питьевой водой практически можно применять только магний и алюминий, поскольку продукты их реакции не вредны для здоровья, а ионы магния и без того содержатся в природной питьевой воде.  [c.412]

Стоимость сооружения станции катодной защиты с наложением тока от внешнего источника для мостового причала для разгрузки танкеров составила 26 марок в расчете на 1 м это соответствует 2,2 % всей стоимости защищаемого объекта. При затратах на электроэнергию  [c.421]

Катодная защита основана на наложении отрицательного потенциала от внешнего источника тока на металл, при этом значительно замедляется процесс его ионизации, а в реакцию деполяризации вступают электроны не с металла, а от внешнего источника тока. При этом положительный полюс источника тока подсоединяется к анодному заземлителю. Обязательным условием катодной защиты является наличие токопроводящей среды (природные почва, вода и т.п.) между защищаемым сооружением и анодным заземлителем. Критериями эффективности катодной защиты являются защитный потенциал и плотность тока.  [c.4]

В применяемых установках катодной защиты необходимая катодная поляризация защищаемой поверхности может быть достигнута двумя основными путями или при помощи наложенного от внешнего источника тока, или при помощи искусственно созданных крупных гальванических элементов, в которых катодом является защищаемое сооружение. В последнем случае катодная защита носит также название протекторной защиты (защиты гальваническими анодами, автономными анодами). Для системы защиты с наложенным током ГОСТ 5272—50 допускает также применение термина электрозащита. Принципиальная схема такой защиты приведена на рис. 101. Как видно  [c.180]


Устройство катодной защиты заключается в наложении отрицательного потенциала на защищаемый объект от внешнего источника постоянного тока (катодная станция). Положительный полюс этого источника подключают к специальным электродам заземления (анодный заземлитель), которые подвергаются разрушающему действию — электрокоррозии. Суть протекторной защиты — создание такого рассредоточенного гальванического элемента (источника питания), в котором катодом является защищаемое металлическое сооружение, а анод изготавливают из более электроотрицательного металла, чем металл защищаемого сооружения. Этот вид защиты аналогичен катодной защите только с гальваническим источником питания— с электродами из разнородных металлов.  [c.494]

Рис. 1.1. Схема катодной защиты. Катодная поляризация осуществляется с помощью наложенного тока от внешнего источника, обычно выпрямителя 1, который преобразует переменный ток промышленной частоты в постоянный. Защищаемая конструкция 2 соединяется с отрицательным по.пюсом выпрямителя тока и действует в качестве катода. Рис. 1.1. Схема <a href="/info/6573">катодной защиты</a>. <a href="/info/39667">Катодная поляризация</a> осуществляется с помощью наложенного тока от внешнего источника, обычно выпрямителя 1, который преобразует переменный ток <a href="/info/29116">промышленной частоты</a> в постоянный. Защищаемая конструкция 2 соединяется с отрицательным по.пюсом <a href="/info/236705">выпрямителя тока</a> и действует в качестве катода.
В принципе употребляемую в настоящее время усиленную дренажную защиту можно свести к описанной X. Геппертом катодной защите с наложением тока от внешнего источника. Гепперт в своей заявке на патент уже указал, что благодаря этому компенсируются блуждающие токи, стекающие с трубопровода, к упомянул также о возможности непосредственного соединения источника защитного тока с рельсами. Без дополнительного внешнего тока прямое соединение между трубопроводом и рельсом дает достаточный эффект только если рельсы всегда отрицательны, т. е. поблизости от выпрямительных устройств. Около 1930 г. в Милане и Турине уже имелось 25 прямых дренажей блуждающих токов для кабелей связи. Если же рельсы иногда оказывались также  [c.41]

Если при проектировании защитной системы будет установлено, что с применением протекторов можно получить лишь небольшой запас в величине защитного тока или вообще не обеспечивается запаса с приемлемыми затратами, то следует предпочесть способ защиты с наложением тока от постороннего источника. При наличии блуждающих токов, дагке если они влияют на защищаемые резервуары-хранилища лишь в сравнительно слабой степени, тоже следует применять станции катодной защиты. В тех случаях, когда протекторная защита и защита с наложением тока от внешнего источника в техническом и экономическом отношениях равноценны, применение станций катодной защиты тоже более выгодно ввиду большого запаса по величине защитного тока. Напротив, преимуществом протекторной защиты является более высокая эксплуатационная наден ность.  [c.273]

Вид, исполнение, коррозия материала и срок службы анодных зазем-лителей и анодов систем катодной защиты были рассмотрены в разделе 8. В разделе 9 были представлены сведения о защитных установках. На рис. 17.3, б показана принципиальная схема центрального анода с наложением тока от внешнего источника для одного из сооружений в прибрежном щельфе. Аноды систем катодной защиты портовых сооружений должны работать в принципе с возможно более низким анодным напряжением порядка всего нескольких вольт, чтобы обеспечить равномерное распределение защитного тока и снизить эксплуатационные расходы. Размеры анодов (анодных заземлителей) должны быть выбраны с запасом, поскольку это позволяет предотвратить неравномерное распределение защитного тока и чрезмерную защиту поблизости от анодов. Кроме того, возможный выход из строя отдельных анодов при этом будет иметь менее вредные последствия.  [c.341]

Внутренняя защита танков осуществляется при помощи протекторов. Защита с наложением тока от внешнего источника не допускается ввиду опасности возгорания при образовании искр или коротком замыкании. Объектами защиты являются балластные, грузовые (для перевозки нефти), топливные и водяные танки (см. также раздел 20). Разработаны предписания по проектированию системы защиты и выбору протекторов [3], иозволяющие также и при соорул ении судов отказаться от запасов на коррозию при расчете толщины стенки. В зависимости от системы защиты критериев танки могут классифицироваться следующим образом  [c.368]

На рис. 20.10 показана конструкция центробежного насоса с катодной защитой из оловянной бронзы G—SnBzlO по DIN 1705 [11], рабочее колесо которого выполнено в виде анода с наложением тока от внешнего источника, причем дополнительный стержневой электрод введен внутрь всасывающего патрубка. Еще один стержневой анод располагается в нагнетательном патрубке насоса (см. рис. 20.10,6). Рабочее колесо, стержневые аноды и защитная втулка вала выполнены из платинированного титана. Вал насоса изготовлен из сплава uAlllNi по DIN17665. Подшипники качения электрически изолированы от неподвижных деталей поливинилхлоридными втулками и закреплены в требуемом положении подшипниковыми крышками из твердого полиэтилена. Вал уплотняется сальниковой втулкой с набивкой втулка футерована поливинилхлоридом. Грундбукса сальника тоже изготовлена из поливинилхлорида. Передача усилия от электродвигателя обеспечивается через изолирующую муфту с круговыми зубьями и по-  [c.389]

Рис. 20.16. Анодная внутрен[1яя защита от коррозии охладителя серной кислоты (аэрорефрижератора) - Л — защищаемый объект (анод) — катод (с наложением тока от внешнего источника) В — электрод сравнения Рис. 20.16. Анодная внутрен[1яя защита от коррозии охладителя <a href="/info/44834">серной кислоты</a> (аэрорефрижератора) - Л — защищаемый объект (анод) — катод (с наложением тока от внешнего источника) В — электрод сравнения

В отличие от обычных алюминиевых протекторов (см. табл. 7.3) аноды-протекторы с наложением тока от внешнего источника при электролизном способе защиты изготовляют из чистого алюминия, который в присутствии хлоридных и сульфатных ионов не подвергается анодной пассивации. В воде с очень малым содержанием солей и электропроводностью х<40 мкСм-см- поляризация может сильно увеличиться, из-за чего требуемая плотность защитного тока уже не будет обеспечена. Другим фактором, ограничивающим применимость, являются значения pH менее 6,0 и более 6,5, поскольку при этом растворимость А1(0Н)з получается слишком большой и эффект образования защитного слоя не достигается [8].  [c.412]

Требуемый защитный ток существенно зависит от качества покрытия и от площади защищаемой поверхности [2]. Протяженность зоны защиты должна быть ограничена установкой изолирующих фланцев. Не должно быть никаких соединений (низкоомных контактов) на землю, через которые может теряться заметная доля защитного тока. Уровень токоотдачи и сопротивление растеканию тока с анодных заземлителей систем катодной защиты, а следовательно, и напряжение на выходе преобразователя, необходимое для наложения защитного тока, решающим образом зависят от удельного электросопротивления грунта. Чем выше затраты на подвод тока в установках с наложением тока от внешнего источника, тем больше сдвигается экономичность в пользу систем с протекторами. Обычно решение по выбору того или другого  [c.414]

Напротив, затраты на среднюю станцию катодной защиты с наложением тока (10 А) от внешнего источника составляют (табл. 22.2) Яр,=25 ООО марок. Для очень малых станций, например применяемых для наружной катодной защиты резервуаров, эти затраты при малой токоотдаче и небольшом числе анодных заземлителей могут сократиться примерно до 2000 марок ФРГ. Вследствие этого при более крупных резервуарах и более высоких удельных электросопротивлениях грунта, как показывают изложенные ниже соображения, установка с наложением тока от внешнего источника оказывается более выгодной.  [c.416]

Рис. 22.1. Области экономической выгодности применения катодной защиты магниевыми иротекторами (/) и с наложением тока от внешнего источника (II) р —удельное электросопротивление грунта — требуемый защитный ток Рис. 22.1. Области экономической выгодности применения <a href="/info/6573">катодной защиты</a> магниевыми иротекторами (/) и с наложением тока от внешнего источника (II) р —<a href="/info/166961">удельное электросопротивление</a> грунта — требуемый защитный ток
В системах катодной защиты с наложенным током от внешнего источника часто используется постоянное (нерегулируемое по величине) напряжение, обеспечивающее сравнительно постоянный ток защиты. Однако при изменении начальных условий необходимый ток защиты может значительно изменяться, и конструкция может быть защищена или перезащищена в течение длительного времени. В этом случае целесообразно использовать автоматические катодные станции, поддерживающие на заданном уровне защитный поляризационный потенциал сооружения по отношению к электроду сравнения, что порой требует существенного изменения тока защиты.  [c.34]

Как правило, при осуществлении катодной защиты с наложением тока от внешнего источника и с применением протекторов целесообразно одновременно наносить изоляционные покрытия. Такое сочетание распространено в современной практике. Например, при нанесении покрытия на трубопровод распределение тока значительно улучшается по сравнению с непокрытым трубо-  [c.176]

Электрохимическая защита. Защита наложением катодного тока от внешнего источника или с помощью протекторов чрезвычайно эффективно при коррозионной усталости. При этом коррозионно-усталостная прочность металлов может не только полностью восстанавливаться до усталостной прочности в воздухе, но и стать несколько выше, так как будет ликвидировано также влияние атмосферной коррозии на усталостную прочность [37 ]. Такая степень защиты наблюдается как для материалов, не чувствительных к водородной усталости, так и при определенных потенциалах для остальных сплавов. При сопутствующих электрохимической защите процессах, снижающих уста-лостую прочность, возможна как полная защита, так и частичек  [c.84]

Электрохимическая защита яеталла от коррозии осуществляется наложением электрического тока от внешнего источника или соедине-нием с металлом (протектором), имеющим больший отрица ьный (катодная защита) или больший положительный (анодная защита) потенциал, чем защищаемый металл.  [c.60]


Смотреть страницы где упоминается термин Защита наложением тока от внешнего источника : [c.38]    [c.273]    [c.296]    [c.339]    [c.397]    [c.86]    [c.15]    [c.160]   
Смотреть главы в:

Катодная защита от коррозии  -> Защита наложением тока от внешнего источника



ПОИСК



Внешние токи

Катодная защита с наложением тока от внешнего источника и электролитической обработкой воды

Наложение

Протекторная защита или катодная защита с наложением тока от внешнего источника

СРЗ-А-М1, внешний вид внешнего источника



© 2025 Mash-xxl.info Реклама на сайте