Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Моделирование энергетических установок

Смирных Е.А. Моделирование периодического возбуждения плоской турбулентной струи методом дискретных вихрей / В кн Теплофизические и физ.-химич. процессы в энергетических установках. Минск. 1986. С. 92-96.  [c.176]

Математическая модель теплоэнергетической установки дает формализованное описание количественных и логических взаимосвязей между технологическими, материальными и энергетическими параметрами установки, характеристиками внешних связей, системой ограничений и величиной соответствующего критерия эффективности. Поскольку общие принципы построения математических моделей теплоэнергетических установок различных типов достаточно широко освещены в [1, 2], здесь основное внимание уделяется вопросам наиболее рациональной реализации этих принципов. В связи с этим необходимо отметить особенности моделирования паротурбинных электростанций с МГД-генераторами.  [c.106]


Иерархия теплоэнергетических систем промышленны.х предприятий. Теплоэнергетическая система промышленного предприятия представляет собой единый технический комплекс разнородных элементов энергетического оборудования со сложной схемой внутренних и внешних взаимосвязей. Для решения задач исследования и оптимизации ТЭС ПП целесообразно использовать методологию системного подхода к моделированию сложных схем. Одним из его основных положений является выделение в ТЭС ПП нескольких уровней иерархии. Это позволяет существенно снизить размерность решаемой задачи, поскольку моделирование осуществляют отдельно на каждом иерархическом уровне, но с учетом требований, предъявляемых со стороны подсистем, стоящих на верхних уровнях иерархии. На рис. 11.1 приведена иерархическая структура ТЭС крупного промышленного предприятия. Элементы V иерархического уровня сами по себе являются сложными установками (например, паровая теплофикационная турбина) и могут подвергаться дальнейшей детализации на более низких уровнях.  [c.239]

Имея в виду задачу исследования термодинамических циклов энергетических установок, сравним натурные исследования и различные виды моделирования. Несмотря на качественное различие объектов исследования, существует подобие структурных схем исследования, изображенных на рис. 10.1. Здесь показаны структурные схемы натурного эксперимента, физического и математического моделирования. В случае натурного эксперимента (рис. 10.1, а) объектом исследования служит действующая энергетическая установка. При физическом моделировании (рис. 10.1, б) объект исследования — экснерименталБная установка, ре- ализующая те же физические процессы, что и в натурном эксперименте. При-математическом моделировании объект исследования заменяется ЭВМ.  [c.239]

Узловой метод анализа фирмы Санпауэр . В общих чертах метод моделирования двигателей Стирлинга применительно к свободнопоршневым двигателям Била был разработан Гедеоном в 1978 г. в фирме Санпауэр (г. Атенс, шт. Огайо) [138]. Численное моделирование представляет собой составную часть проектирования солнечной энергетической установки. Наряду с экспериментальными и теоретическими работами фирма осуществляет работы по дальнейшему усовершенствованию конструкции двигателя и программ его расчета.  [c.53]


Исследование термодинамических циклов тепловых машин является основной задачей технической термодинамики. Однако провести подробное исследование цикла, установить его основные характеристики (работу, КПД) при изменении отдельных параметров на реальной установке можно лишь в ограниченных пределах. Поэтому при исследовании циклов энергетических установок вместо натурных испытаний целесообразно использовать различные модели. Модели бывают разные в зависимости от модели различают предметное, физичеекое, аналоговое и математическое моделирование.  [c.238]

Уилсон Д., Редифер М. Равновесный состав продуктов сгорания при моделировании горения угля. Взаимосвязь с коррозией и золовым загрязнением поверхностей нагрева. — Энергетические машины и установки , 1974, № 2.  [c.127]

Ряд методических и практических вопроеов по применению математического моделирования для оптимизации термодинамических и конструктивных параметров теплоэнергетических установок различного типа (паротурбинные знергоустадовки, парогазовые установки ПГУ, магнитогидродинамические установки МГД и т. д.) решается в работах Сибирского энергетического института [Л. 27], а для отдельных теплообменников в [Л. 47].  [c.57]

Таким образом, результаты математического моделирования и оптимизации сопоставляемых типов ПТУ с ДФС показали, что лучшей является двухконтурная установка, работающая по сопряженным циклам, с двухступенчатой регенерацией, в которой конденсация рабочего тела энергетического контура и прокачка рабочего тела по обоим контурам на стационарном режиме работы осуществляется конденсирующим инжектором, функционирующим в режиме термонасоса.  [c.169]

Энергохолодильную, как и любую другую теплоэнергетическую установку, наиболее целесообразно моделировать в виде иерархически взаимосвязанной системы математических моделей отдельных агрегатов и ЭХУ в целом. Элементную базу ЭХУ составляют хорошо изученные и в большинстве традиционные для теплоэнергетики и холодильной техники агрегаты. Поэтому основные трудности при математическом моделировании связаны с созданием моделей ЭХУ в целом. В этих моделях оптимизируются термодинамические и расходные параметры циклов, в результате чего в ряде случаев оптимизируется и сама схема установки. Разработка таких математических моделей имеет и самостоятельное значение, поскольку на их базе, особенно на этапах раннего проектирования, можно выбрать оптимальные схемные решения и оценить основные технико-энергетические параметры ЭХУ. Для получения зависимостей, связывающих термодинамические и расходные параметры циклов ЭХУ с их показателями качества, в дополнение к % введем ряд характеристик ЭХУ.  [c.190]

В настоящее время перспективность использования комбинированных энергетических установок с МГД-генераторами не вызывает сомнении. Необходимы инженерные исследования таких установок для на-хои дения оптимальных решений при их проектировании. Для этого требуется комплексный подход, который предполагает одновременную оптимизацию термодинамических, расходных и конструктивно-компоновочных параметров всех элементов установки по наиболее полному показателю эффективности — сумме расчетных затрат (с учетом многочисленных внешних факторов). Осуш ествить такой комплексный подход в рамках требований, предъявляемых к современным инженерным расчетам, удается лишь с привлечением методов математического моделирования и ЭЦВМ. Только в этом случае можно получить решение, эффективное по времени, затратам, точности и широте охвата влияющих факторов [1], На первом этапе исследуется термодинамическое совершенство рассматриваемых энергетических установок, чему и посвящается настоящая глава.  [c.106]

Расчет тепловой схемы энергетической ГТУ в переменном режиме — весьма сложная задача. В полном объеме она выполняется фирмами-изгото-вителями установки с использованием собственных расчетных методов, стендовых испытаний, моделирования и результатов измерений характеристик первых опытных образцов. Научно-исследовательские и проектные институты, энергопредприятия, вузы и другие организации используют представляемые фирмами характеристики и по ним оценивают возможности той или иной ГТУ. При наличии достаточной информации энергетические показатели ГТУ для различных режимов работы можно определить, аппроксимируя информацию фирм-изготовителей оборудования, представляемую ими в графической или табличной форме.  [c.224]


Уильсон, Редифер. Равновесный состав продуктов сгорания при моделировании горения угля. — Энергетические машины и установки.— М. Мир, 1974, W 2, с. 70—78.  [c.270]


Смотреть страницы где упоминается термин Моделирование энергетических установок : [c.89]    [c.173]    [c.336]   
Смотреть главы в:

Практикум по технической термодинамике  -> Моделирование энергетических установок



ПОИСК



Установка энергетическая



© 2025 Mash-xxl.info Реклама на сайте