Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Равновесие кругового полого цилиндра

Равновесие кругового полого цилиндра  [c.146]

Рассмотрим равновесие кругового полого цилиндра, находящегося под действием а) равномерно распределенных касательных сил, приложенных на границах б) постоянного давления на границах. Оба случая относятся к первой краевой задаче.  [c.146]

Первые приложения общих уравнений равновесия упругих тел к конкретным задачам были осуществлены, по-видимому, в 1827—1828 гг. находившимися в то время на русской правительственной службе в Петербурге французскими инженерами Г. Ламе и Э. Клапейроном в их Мемуаре о внутреннем равновесии однородных твердых тел В этом мемуаре они рассмотрели задачи о растяжении бесконечной призмы, кручении бесконечного кругового цилиндра, равновесии шара под действием взаимного притяжения его частиц, равновесии полого кругового цилиндра и шара под действием внутреннего и внешнего давления. Далее они выписали некоторые интегралы (с четырех-  [c.54]


Если это предположение не выполняется, поверхности скольжения становятся, вообще говоря, очень сложными, напоминающими спиральные поверхности. Исключение составляет случай полого кругового цилиндра, удерживаемого в равновесии под действием радиального давления Ог, равномерно распределенного по внутренней и наружной поверхностям, г=а и г=Ь, в то время как аг = 02 равно промежуточному главному напряжению (см. 15.7, А). При этом поверхности скольжения — цилиндрические, а их образующие получаются с использованием двух логарифмических спиралей,  [c.611]

До сих пор, рассматривая упругое равновесие полого кругового цилиндра, мы предполагали, что упругие характеристики неоднородного цилиндра (коэффициенты деформации) зависели только от одной переменной г. Задачи усложняются, если коэффициенты деформации зависят не только от г, но и от z, отсчитываемой параллельно образующей [72].  [c.245]

Мы рассмотрим простейшие случаи кругового цилиндра радиуса В, имеющего на оси вращения сферическое включение или полость и находящегося в упругом равновесии под действием скручивающих моментов приложенных к торцам. Все задачи этого рода будем решать приближенно цилиндр рассматриваем как бесконечное упругое пространство с включением или полостью, а напряжения разыскиваем так, чтобы они точно удовлетворяли условиям на поверхности включения или поло-  [c.356]

Равновесие и движение упругого твердого тела. Вывод дифференциальных уравнений для тела, обладаюи его различными упругими свойства.чи по разным направлениям. Число упругих постоянных, вообще, 21 оно уменьшается при наличии плоскостей симметрии и для изотропного тела сводится к двум. Задача о равновесии имеет только одно решение. Когда на частицы тела не действуют силы, то оно может быть в равновесии, если компоненты сжатия постоянны. Всестороннее сжатие, коэффициент упругости. Равновесие изотропных цилиндров, на поверхности оснований которых известным образом распределены давления. Продолжение вычисления для случая кругового сечения. Равновесие полого шара, на поверхности которого действует постоянное нормальное давление)  [c.322]

Пусть столб жидкости, представляющий собой круговой цилиндр радиуса R, окружен слоем жидкости с другой плотностью. Вся система помещена в твердую цилиндрическую оболочку радиуса Я2, коаксиальную с внутренним жидким цилиндром. В отсутствие поля тяжести и других внешних воздействий такое состояние с цилиндрической поверхностью раздела является равновесным. Как известно [9], это равновесие неустойчиво относительно осесимметричных возмущений, если длина жидкого цилиндра достаточно велика (рэле-евская капиллярная неустойчивость). Если внешняя жидкость имеет плотность большую, чем внутренняя, развитие неустойчивости можно предотвратить, приведя систему во вращение вокруг собственной оси. При обратном соотношении плотностей вращение приводит к дополнительной дестабилизации, поскольку к капиллярной неустойчивости добавляется неустойчивость Рэлея Тейлора в поле центробежных сил.  [c.181]


Общая задача о магнитной структуре малых ферромагнитных частиц при их перемагничивании решалась методами теории микромагнетизма [1-6], в которой возможный процесс перемагничивания (например, образование доменов или однородное вращение векторов намагниченности) не постулируется заранее. В трактовке этой теории направляющие косинусы векторов намагниченности микрообъемов ферромагнетика рассматриваются как непрерывные функции координат и определяются нри учете всех сил, действующих на векторы намагниченности, исходя из условий равновесия. Такое рассмотрение приводит к системе нелинейных дифференциальных уравнений, точное решение которых получено лишь для частного случая магнитных частиц, имеющих форму эллипсоида и бесконечного кругового цилиндра [1-13, 1-14]. В результате показано, что в малых частицах указанной формы возможен механизм неоднородного поворота векторов намагниченности при значениях внешнего поля, меньших, чем те, которые необходимы для процесса их однородного поворота [см. (1-57)]. В частице, имеющей форму тонкого цилиндра, на начальных стадиях процесса перемагничивания могут иметь место как однородное вращение векторов намагниченности частицы, так и неоднородное их вращение, осуществляющееся вихревым изменением или изгибанием направлений векторов намагниченности 3 35  [c.35]


Смотреть страницы где упоминается термин Равновесие кругового полого цилиндра : [c.656]    [c.322]    [c.440]    [c.920]    [c.132]   
Смотреть главы в:

Теория упругости  -> Равновесие кругового полого цилиндра



ПОИСК



Цилиндр круговой

Цилиндры полые 439 —



© 2025 Mash-xxl.info Реклама на сайте