Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Алюминий бромистый и хлористый

Алюминий бромистый и алюминий хлористый (Эвтектическая смесь)  [c.139]

Большой интерес как перспективный теплоноситель представляет эвтектическая смесь бромистого и хлористого алюминия. Температура плавления у нее 70°С, что значительно ниже, чем у нитрит-нитратных смесей, а давление пара почти в 20 раз ниже, Ч6М у насыщенного водяного пара при той же температуре. Скорость коррозии углеродистой стали в этом расплаве при 200— 500° С в отсутствие влаги воздуха не превышает 0,16 г/(л - ч) (длительность испытаний 300 ч), коррозия равномерная, межкристал-литные разрушения отсутствуют.  [c.180]


При идентичных метеорологических условиях испарение пленки электролита с поверхности металла зависит от свойств металла и особенно электролита. Подтверждением тому могут служить результаты проведенных экспериментов. На образцы алюминия, меди, титана и стали наносили капли различных электролитов морской воды и растворов фтористого, хлористого, бромистого и йодистого натрия (концентрация 1,8%) и фиксировали время их испарения при температурах 20—60 °С.  [c.45]

Бромистый алюминий обладает большей химической активностью, чем хлористый алюминий, и поэтому безводный бромистый алюминий должен быть также упакован н герметичном барабане из листового железа.  [c.64]

Влияние солей на коррозию в кислотах. Добавка солей к кислоте может иметь двоякое влияние на ее коррозионную активность, так как (1) соль увеличивает ее проводимость и, может способствовать образованию комплексных ионов (оба эти фактора благоприятствуют коррозии), однако (2) во многих случаях соль может адсорбироваться металлом и оказать частичную защиту. Вальперт - установил, что добавка соли, стимулирующей коррозию хрома в серной кислоте, может задержать коррозию железа. Коррозия железа в 8 N серной кислоте задерживается соляной, муравьиной, уксусной, пропионовой и масляной кислотами, повидимому, вследствие адсорбции. Задержку коррозии производят также иодистый, бромистый и хлористый натрий, причем наиболее эффективным является иодистый, а наименее — хлористый натрий. Питч приписывает это явление блокировке адсорбционных центров. Такие факты, как более быстрая коррозия железа в серной кислоте, чем в соляной (тогда как в случае цинка имеет место обратное явление), ускорение коррозии тиоциа-натом калия, коррозии кадмия в соляной кислоте и задержка этой добавкой коррозии алюминия при тех же концентрациях показывают, как трудно делать предсказания, когда одновременно действуют два противоположных фактора.  [c.386]

Электрохимические процессы. Хотя электроосаждение алюминия из водных растворов невозможно, тем не менее изучались вопросы получения защитных покрытий из расплавленных ванн, содержащих алюминий и хлористый натрий процесс, который производится при температуре 160—200°, ак будто бы имеет большие потенциальные возможности. Другой метод Блу и Мазерса основан на применении соединений, получающихся при растворении бромистого и хлористого алюминия в бромистом этиле и бензоле, с ксилолом в качестве осветлителя .  [c.721]


Структура бромистого алюминия и хлористого алюминия была Изучена Пальмером Л. 30]. Им было установлено, что при температурах /<400° С эти соли образуют молекулы AljBre и Alj le следующего типа  [c.33]

При выборе ингибиторов очень важно знать, какие вещества, содержащиеся в данной среде, могут вызывать кор -розию металлов,, которые подвергаются воздействию этой среды. Довольно часто агрессивные по отношению к металлам вещества отсутствуют в исходной жидкости и образуются в ней лишь в процессе работы, В таких случаях весьма целесообразно применение добавок, препятствующих образе-ванию в данной среде агрессивных веществ . Так, в жидкое топливо и смазочные масла в качестве замедлителей коррозии вводят антиоксидант ы—вещества, препятствующие окислению этих продуктов кислородом воздуха при их применении и хранении. В хлорорганических (или броморганнческих) соединениях и в углеводородных растворах AI I3 коррозия вызывается образующимся в них хлористым (или бромистым) водородом. Для защиты металлов здесь можно использовать вещества, дающие стойкие соединения с НС (или НВг). Например коррозию алюминии в среде хлористого метила СН,С1 можно предотвратить путем введения аминов . В маслах коррозия металла вызывает-1 я иногда небольшими примесями воды, в этих случаях в качестве ингибиторов применяются мыла, образуюище с водой молекулярные соединения.  [c.167]

Кроме всего сказанного, следует отметить, что практически не действуют на алюминий и его сплавы су.хой фтор до 450 °С (0,005 г л1 сутки), сухой хлор, спиртовой раствор йода, сухие хлористый, фтористый, бромистый и йодистый водород, су.хой озон (действие влажного озона аналогично перекиси водорода), влажный сероводород до 250 °С, гидразин, сухие хлорсульфо-но вая и фторсульфоновая кислоты, белый фосфор, обезвоженная пятиокпсь фосфора, сухие трихлорид и пентахлорид фосфора, сухой уголь, графит, кремнистый бор, окись углерода до 550 °С, СУХОЙ углекислый газ.  [c.68]

Низкие критические нагрузки характерны и для других химически реагирующих систем. В. А. Робин [4.15] исследовал теплообмен в эвтектических смесях хлористых и бромистых сурьмы и алюминия, являющихся химически реагирующими системами (В. А. Робин рас- "матривал смесь как обычную бинарную). Для системы АЬВгб+АЬСи критические нагрузки оказались в 4—5 раз ниже рассчитаных по формуле С. С. Кутателадзе. Анализ результатов киносъемки процессов кипения четырехокиси азота, а также хлорида и бромида алюминия показывает ряд сходных особенностей в динамике пузырьков пара и прежде всего склонность к образованию малоустойчивых групп пузырьков у поверхности нагрева, что уменьшает скорость их перемещения в жидкость. При увеличении нагрузки количество пузырьков пара, собранных в целые комплексы, увеличивается, что затрудняет циркуляцию жидкости к поверхности нагрева и способствует наступлению пленочного кипения при меньших нагрузках. Видимо, это и является основной причиной снижения критических нагрузок.  [c.104]

К солевым теплоносителям относятся расплавы неорганических солей и их эвтектические смеси четыреххлористый и четырехбромистый титан [1, 2], хлористый и бромистый алюминий и их эвтектическая смесь [1, 3—5], эвтектика треххлористой и трехбромистой сурьмы [1, 6], двух- и трехкомпонентная смесь нитратов и нитритов калия и натрия (I, 7—34] и др. Состав и основные температурные характеристики солевых расплавов приведены в табл. 8.1 и 8.2.  [c.178]

Хлористый алюминий. . . Смеси хлористого и бромистого А1С1з 192 192 (возг.)  [c.179]

Эвтектическая смесь хлористой и бромистой сурьмы привлекает внимание низкой температурой плавления ( 38°С). Она удобнее в эксплуатационных условиях, чем галогениды алюминия, так как в меньшей степени гидролизуется при соприкосновении с влагой воздуха. Коррозионные исследования, проведенные Робиным [6] при температуре до 600° С, показали, что в отсутствие контакта с окружающим воздухом, смесь галогенидов сурьмы практически не вызывает коррозии железа, а также сталей Ст. 10 и 1Х18Н10Т. Данные Робина по коррозионной стойкости металлов в расплавах хлоридов и бромидов сурьмы, алюминия, титана приведены в табл. 8.3.  [c.180]

До настоящего времени в ходу лабораторная посуда, электрохимические электроды и нерастворимые аноды из платины. Еще не так давно большое количество электрических печей сопротивления изготовлялось с платиновой обмоткой (ныне платиновая обмотка с большим успехом заменяется жаростойкими сплавами на железной основе с хромом и алюминием). До настоящего времени платина довольно часто применяется для термопар и неокисляющихся электроконтактов. В виде сплавО В платина применяется для фильер при производстве искусственного волокна. Используемся платина также в качестве контакта и катализатора при окислении аммиака в азотную кислоту. В некоторых химических производствах применяют обкладку платиновыми листами (толщиной не менее 0,1 мм) аппаратов и отдельных деталей приборов, работающих в наиболее агрессивных средах. Плагина стойка во многих минеральных и во всех органических кислотах и едких щелочах. Однако смесь соляной и азотной кислот, а также смесь соляной кислоты с другими сильными окислителями разрушают платину, хотя и заметно медленнее, чем золото. Чистые галогено-водородные кислоты при нормальных тем пературах почти не действуют на платину, однако при нагреве начинают воздействовать (причем более сильно бромисто-водородная и иодисто-водород-ная). Свободные галогены при высоких температурах также воздейст вуют на платину. Платина не окисляется ори нагреве на воздухе и з кислороде до температуры плавления, однако подвергается разрушению даже при гораздо более низких температурах в атмосферах, содержащих СО, или в контакте с углем, при одновременном наличии хлора или хлористых солей, вследствие способности образовывать летучие карбонил-хлориды платины.  [c.577]



Смотреть страницы где упоминается термин Алюминий бромистый и хлористый : [c.32]    [c.67]    [c.101]    [c.18]    [c.125]    [c.36]    [c.63]    [c.14]    [c.46]    [c.189]   
Химическое сопротивление материалов (1975) -- [ c.139 ]



ПОИСК



Алюминий бромистый

Алюминий хлористый

Э тил хлористый



© 2025 Mash-xxl.info Реклама на сайте