Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стержневые системы геометрическое исследование

Свойством геометрической изменяемости могут обладать и многозвенные системы, содержащие в своем составе более четырех стержней. Это устанавливается специальным исследованием того и.ти иного варианта стержневой системы, которое выполняется на начальной стадии ее проектирования. Методика такого исследования, законы кинематики и динамики элементов механизма изучаются за рамками курса сопротивления материалов.  [c.79]


Если при моделировании стержневой системы ставится цель исследования общей прочности и устойчивости, то при проектировании модели можно отказаться от полного геометрического подобия, обеспечивая лишь подобие длин стержней, площадей поперечных сечений и соответствующих моментов инерции. Такой подход значительно упрощает конструкцию модели и применяется, например, при моделировании перемещений элементов судового корпуса на металлических моделях из электродной проволоки, описанных выше ( 11.2, п.2).  [c.262]

Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]



Смотреть страницы где упоминается термин Стержневые системы геометрическое исследование : [c.116]   
Курс теоретической механики Том 1 Часть 2 (1952) -- [ c.162 ]



ПОИСК



412, 413 стержневые

Система геометрическая

Система стержневая

Стержневые системы систем



© 2025 Mash-xxl.info Реклама на сайте