Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Флуктуации числа молекул в растворе

Рассмотреть флуктуации числа молекул 7Vi растворенного вещества в небольшой части двухкомпонентного раствора, содержащей определенное число Nq молекул растворителя. Применив результаты к разбавленным растворам, вывести соотношение между флуктуацией величины и осмотическим давлением. Температуру можно считать постоянной и ее флуктуациями пренебречь. (Указание. Обобщить решение задачи 1 так, чтобы учесть изменение Ni, или, что эквивалентно, воспользоваться Т — i-распределением.)  [c.400]


Если неравенства (7.132), (7.133) не выполняются, т. е. элементы объема Vi содержат малое число молекул, то условие аддитивности энергий (7.130) перестает выполняться. Энергия взаимодействия этой малой области с окружающей средой по порядку величины сравнима с энергией самой области. В этом случае локальное термодинамическое описание свойств рассматриваемых элементов объема перестает быть адекватным. Иными словами, однозначная связь между плотностью, температурой, составом и энергией такой малой области, как и сама возможность описания состояния при помощи термодинамических величин, отсутствует. С этой точки зрения флуктуации в малых элементах объема в известной степени аналогичны флуктуациям, имеющим место вблизи критических точек жидкость — пар или критических точек расслаивания растворов.  [c.177]

Существенный вклад в ширину полос инфракрасного поглощения вносят флуктуации энергии межмолекулярных взаимодействий, обусловленные тепловым движением частиц среды [2, 21]. Если молекулы обладают большими дипольными моментами, локализованными на концевых связях, то в жидкостях могут возникать локальные различия диполь-дипольных сил, моделирующие параметры колебательного движения атомов и, в частности, их частоту. Статистические различия межмолекулярных сил могут проявляться также в неполярных растворах вследствие флуктуаций числа частиц, входящих в первый координационный слой молекулы. Они приводят к отклонению локальных значений плотности, диэлектрической постоянной и показателя преломления среды от их средних значений. В результате возмущений частот внутримолекулярных колебаний в ИК-спектре возможно появление совокупности полос определенного колебательного перехода, смещенных друг относительно друга и имеющих свою ширину и форму. Огибающая совокупности полос дает сложный статистический контур. Механизм уширений, при котором ширина полосы определяется наложением элементарных составляющих, каждая из которых возникает за счет поглощения молекул, находящихся в неодинаковых условиях окружения, называется неоднородным.  [c.145]

Остановимся теперь на вопросе о зародышах кавитации. Чистая жидкость имеет порог кавитации (теоретически [42]) 10 Па. Зародыши в ней могут возникать только вследствие гетерофазных флуктуаций. Но реально кавитационная прочность жидкостей, в том числе и воды, редко превышает 10 Па, что означает, что в жидкости присутствуют достаточно крупные стабильные пузырьки газа. Общепринятой гипотезой, объясняющей их возникновение и длительное существование, является следующая. В очищенной воде, дегазированной и профильтрованной, количество пузырьков ничтожно мало, и ее прочность может достигать около 3-10 Па [33]. Под действием космического излучения молекулы воды распадаются, образуя водород и кислород, которые растворяются в воде. Через некоторое время их концентрация возрастает до такой степени, что из-за флуктуаций могут образоваться пузырьки размерами 2 10 см. На поверхность этих пузырьков попадают молекулы поверхностно активных веществ, которые всегда, хотя и в малом количестве, присутствуют в жидкости. Мономолекулярный слой таких веществ на поверхности пузырька полностью останавливает диффузию газа из пузырька в жидкость, и даже в жидкости, где концентрация растворенного газа намного меньше насыщенной, такой пузырек будет жить длительное время. Броуновское движение пузырьков приводит к их столкновению и слиянию. Таким образом, возникают более крупные пузырьки, которые и обусловливают реальную кавитационную прочность жидкости. Зародышами кавитации могут служить и твердые несмачиваемые частички, а также газовые включения в трещинах и порах твердых поверхностей. В некоторых жидкостях, например в жидком гелии и водороде, зародышами кавитации являются паровые пузырьки, возникающие либо на теплых поверхностях вследствие локального вскипания, либо на треках пролета ионизующих частиц космического излучения. Это открывает возможности применить акустическую кавитацию для регистрации ионизующего излучения [29].  [c.159]


Заметим, что последующие выводы в равной мере могут относиться к молекулам растворенного вещества в растворе или взвешенным коллоидным частицам. Для газа (хотя бы и в поле внешних сил) эти выводы применимы также к флуктуациям числа частиц, скорости которых лежат в определенных пределах, другими словами, к флуктуациям числа частиц, находвдихся в определенной области фазового пространства молекулы. В самом деле, как следует, например, из канонического выражения для вероятности состояния газа, попадания разных молекул в эту область представляют собой независпмые события (вероятность состояния равна произведению вероятностей для отдельных молекул). В этом случае п выражается, конечно, согласно распределению Максвелла.  [c.249]

Причиной возникновения зародышей кристаллов в растворах является флуктуация концентраций, в результате чего образуются дозародыши кристаллов, представляющие собой скопления молекул или ионов растворенного вещества. Дозародыши могут быстро образовываться под действием теплового движения молекул раствора. В случае столкновения друг с другом такие скопления либо распадаются, либо укрупняются. Когда при укрупнении размер дозародышей достигает некоторой критической величины, образуются зародыши кристаллов. Начиная с некоторого критического размера Гкр, составляющего 0,5-5 нм, начинается быстрый рост зародышей и образование большого числа кристаллов различного размера. Чем меньше критический размер кристалла тем больше должна быть степень пересыщения раствора. Эта закономерность выражается следующим уравнением  [c.296]

Р. с. в твёрдых тел ах существенно отличается от Р. с. в жидкостях или растворах, что связано с большим разнообразием слабозатухающих флуктуаций в виде упругих волн. В аморфном твёрдом теле могут распространяться два типа звуковых волн с разными скоростями продольные, как в жидкости, и поперечные. С ними связаны два дублета в тонкой структуре рэлеевской линии, а центр, компонента спектра рэлеев-ской ЛИВИИ, обусловленная беспорядочным расположением молекул в аморфной среде, очень узка из-за медленной (вследствие диффузии) зволюцип беспорядка. В спектрах Р. с. в кристаллах центр, компонента практически исчезает, а общее число компонент тонкой структуры определяется симметрией кристалла и условиями рассеяния углами падения и рассеяния, поляризациями падающей и рассеянной волн. В анизотропнох кристалле максимально возможное число компонент тонкой структуры 24 одна продольная и две поперечные упругие волны порождают 3 дублета, в к-рых каждая линия расщепляется в общем случае на 4 компоненты  [c.282]

Причиной неоднородности может служить тепловое движение молекул, вызывающее, в частности, изменение (флуктуации) плотности. При этом устанавливается связь между изменением плотности Др и Ае. Такого рода термодинамический расчет выполнен для жидкостей, в том числе растворов, а также кристаллов. В работах Л. Мандельштама, Г. Ландсберга и А. Шубина, М. Леонтовича были получены экспериментальные и теоретические данные по рассеянию в кристаллах для случая, когда в кристалле существует градиент температур, что особенно важно для задач теплового излучения. Рассмотрим сначала случай изотермической среды, полагая, что причины рассеяния излучения — изменение плотности среды Лр.  [c.93]


Смотреть страницы где упоминается термин Флуктуации числа молекул в растворе : [c.16]   
Статистическая механика (0) -- [ c.400 ]



ПОИСК



Флуктуации

Число молекул



© 2025 Mash-xxl.info Реклама на сайте