Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изинга модель двумерная, точное одномерная

За время, отделяющее решение модели Изинга Онсагером в 1944 г. от решения модели жестких шестиугольников Бакстером в 1980 г., статистическая механика двумерных систем обогатилась значительным числом точных результатов. Принято называть модель точно решаемой, когда для некоторой физической величины, такой как свободная энергия, параметр порядка или корреляционная функция, получено удобное математическое выражение или, по крайней мере, когда удалось свести их вычисление к задаче классического анализа. Такие решения, которые поначалу кажутся иногда каким-то курьезом, часто бы-виют интересны тем, что иллюстрируют общие принципы и теоремы, строго выведенные в рамках определенных теорий, а также позволяют контролировать приближенные методы, применимые к более реалистическим и сложным моделям. В теории фазовых переходов модель Изинга, результаты Онсагера и Янга успешно сыграли такую роль. Методы Либа и Бакстера для разнообразных вершинных моделей развили этот успех и расширили набор известных критических показателей, дав материал для сравнения с методами экстраполяции, и заставив уточнить концепцию универсальности. Тесно связанные с классическими двумерными моделями, хотя и не представляющие интереса для теории критических явлений, квантовые одномерные модели, такие, как магнитная цепочка, и знаменитое решение Бете, несомненно внесли вклад в понимание структуры возбуждений в системах с большим числом степеней свободы. Можно было бы также обратиться к физике одномерных проводников. Все эти вопросы теоретической физики, которые, несомненно, оправдывают исследования точно решаемых моделей, не являются предметом настоящей книги, поскольку их изложение потребовало бы обширных и в то же время глубоких познаний в теоретической физике. Речь будет идти в основном  [c.8]


Алгебраически наиболее серьезное следствие перехода от одномерной модели к трехмерной состоит в том, что при этом теряются все преимущества представления через матрицу переноса (8.19). Иначе говоря, появляется та же фундаментальная трудность, что и в статистической механике при рассмотрении модели Изинга (ср. 5.7) поскольку в двумерной или трехмерной решетке каждый узел имеет соседей в разных направлениях, процесс распространения возбуждений уже нельзя изобразить в виде простого произведения независимых матриц, как в формуле (8.20). При рассмотрении линейной цепочки такое представление обеспечило самосогласованный характер уравнения Дайсона — Шмидта (8.76), из которого можно получить точный спектр. Строгого аналога этой теоремы для случая большего числа измерений, по-видимому, нет.  [c.377]

Поскольку точное решение модели Изинга получено лишь для одномерной системы [I и 53 и для набора двумерных решеток в нулевом магнитном поле, задача установления простых и достаточно гибких аппроксимаций остается актуальней. Нам представляется, что аппроксимации не потеряют своего значения и в тем случае, если будет найдено точное решение. В свое время С. В. Тябликовым и авто-  [c.26]

Л А г-модсль J = J,), или модель Гейзенберга — Изинга, точно решается методом анзатца Бете и сводится к двумерной, т.н. шестивершинной, модели, к-рая, в свою очередь, известна также как модель типа льда на квадратной решётке (см. Двумерные решёточные модели). Связь этих моделей позволяет использовать результаты, полученные для шестивершинной модели в случае XXZ-модели. Преимущество классич. двумерной шестивершинной модели перед одномерной квантовой A A Z-моделью заключается в том, что для решения двумерной модели удобно использовать метод трансфер-матрицы.  [c.151]


Смотреть страницы где упоминается термин Изинга модель двумерная, точное одномерная : [c.9]    [c.138]    [c.138]    [c.345]   
Статистическая механика (0) -- [ c.379 ]



ПОИСК



Газ одномерный

Изинга

Изинга модель

Изинга модель двумерная, точное

Модель одномерная

Одномерная модель Изинга

Одномерные и двумерные модели

Тор двумерный



© 2025 Mash-xxl.info Реклама на сайте