Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Операционное исчисление применение для решения дифференциальных уравнений

Символическое, или операционное, исчисление как самостоятельный математический метод было впервые создано профессором Киевского университета М. Ващенко-Захарченко. В своей монографии Символическое исчисление и его приложение к интегрированию линейных дифференциальных уравнений , вышедшей в 1862 г., автор дает систематическое изложение операционного исчисления и выводит основные соотношения и их применения к решению дифференциальных уравнений с постоянными и переменными коэффициентами.  [c.471]


До последнего времени для решения уравнений теплопроводности и диффузии обычно использовались метод разделения переменных, метод мгновенных источников, методы, основанные на применении функций Грина, Дирака и др. Эти классические методы предполагают отыскание в первую очередь общего решения и его последующее приспособление к частным условиям конкретной задачи. Детальное освещение классических методов решения уравнений переноса можно найти в фундаментальной работе А. Н. Тихонова и А. А. Самарского (Л. 7]. Получаемые классическими методами решения, однако, не всегда оказываются удобными для практического использования. Так, иногда требуется получить приближенные соотношения, в которых режимные параметры процесса должны быть отделены от физических характеристик тела или системы тел, взаимодействующих с окружающей средой. Эти важные для практики соотношения бывает затруднительно получить из классических решений. Еще большие осложнения возникают при решении систем дифференциальных уравнений тепло- и массопереноса классическими методами. Под влиянием запросов техники за последние десятилетия инженерами и физиками стали широко применяться операционные методы решения. Основные правила и теоремы операционного исчисления получены киевским профессором М. Ващенко-Захарченко [Л. 8]. Наибольшее распространение они нашли в электротехнике благодаря работам Хевисайда. Этот метод оказался настолько эффективным, ЧТО позволил решить многие проблемы, считавшиеся до его появления почти неразрешимыми, и получить решения некоторых уже рассмотренных задач в форме, значительно более приспособленной для численных расчетов.  [c.79]

Решение системы (1) — (12) связано с большими трудностями. Поэтому были рассмотрены различные возможности численного решения задачи. Применение операционного исчисления Лапласа по переменной времени приводит к системе интегральных или (при несколько иной форме решения) интегро-дифференциальных уравнений. Ядра этих уравнений представляют собой решение уравнений теплопроводности и, строго говоря, являются бесконечными рядами по собственным значениям данной краевой задачи. В этих системах остаются две независимые переменные (время и высота в насадке), т. е. имеются двойные интегралы, причем и по Ро и по 2 как с переменным, так и с постоянным верхним пределом получается своеобразная смесь интегральных уравнений Фредгольма и Вольтерра. Поэтому известные аналитические методы, используемые для решения уравнений типа Фредгольма или Вольтерра в отдельности, в данном случае неприменимы. Конечно, полученные интегральные (интегро-дифференциальные) уравнения могут быть решены одним из известных методов численно, тем более, что численные методы для решения интегральных уравнений хорошо исследованы и их сходимость проверена.  [c.338]



Смотреть страницы где упоминается термин Операционное исчисление применение для решения дифференциальных уравнений : [c.40]   
Метрология, специальные общетехнические вопросы Кн 1 (1962) -- [ c.535 ]



ПОИСК



Дифференциальное исчисление

Исчисление — ш (ш-исчисление)

Операционное исчисление

Применения к дифференциальным уравнениям

Решение дифференциального уравнения



© 2025 Mash-xxl.info Реклама на сайте