Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Линейные молекулы) колебаний и силовые постоянны

Центральносиловые координаты 161, 168 Центральные силы, нх применение при расчете частот колебаний, силовые постоянные 178 (глава II, 4в) линейные трехатомные молекулы 179 нелинейные молекулы ХУ 178 пирамидальные молекулы ХУз 180 простые молекулы с числом атомов больше трех 180 проверка 178, 249  [c.626]

Решение задачи при помощи механических моделей. Ввиду сложности математических расчетов, Кеттеринг, Шатц и Эндрьюс [501] впервые предложили экспериментально изучать колебания молекулярных моделей. Роль атомов играют стальные шарики, связанные друг с другом пружинами, имми-тирующими силы, действуюш.ие между атомами. Такие модели, подвешенные на резиновых шнурах, приводятся в колебания с помощью эксцентричного диска, вращающегося от мотора, скорость вращения которого может регулироваться. При определенной скорости вращения мотора получается резонанс, приводящий модель в колебание при отсутствии резонанса модель остается в покое. Резонансные частоты являются нормальными частотами модели. Форма движения, отвечающая каждой нормальной частоте, может быть одновременно получена стробоскопическим или фотографическим методом (Эндрьюс и Мюррей [53]). Если отношения линейных размеров, масс и силовых постоянных в модели и в действительной молекуле одинаковы, то отношение частот модели и действительной молекулы будет постоянным. Таким образом, если известны силовые постоянные и геометрическая структура молекулы, то можно, не производя расчетов, предсказать основные частоты молекулы по частотам модели или, наоборот, испытывая ряд моделей и сравнивая модельные частоты с наблюденными частотами молекулы, можно сделать выводи о геометрической структуре молекулы и получить отношение силовых постоянных.  [c.176]


Аналогично линейным молекулам, составляющие р , Ру и р колебательного момента количества движения даются уравнениями вида (4,11), где h-—постоянные, зависящие от равновесных расстояний между атомами, от силовых постоянных и от масс. Однако в данном случае могут быть отличными от нуля, если даже i и k относятся к двум составляющим вырожденного колебания. Постоянные С,-, введенные нами выше, как раз и относятся к вырожденному колебанию и дают изменение энергии первого порядка, тогда как все остальные jf дают изменение энергии только второго порядка величины, т. е. приводят к добавлению некототой величины к вращательным постоянным а,. Сильвер и Шефер [790] и Шефер [776, 777] дали явную (но довольно сложную) формулу для , в зависимости от масс, силовых постоянных и междуатомных расстояний для случая плоских и пирамидальных молекул типа ХУ и аксиальных молекул типа XYZs (см. также Ян [468]).  [c.433]

Xs, молекулы, плоские, образующие правильный шестиугольник (De/,) 103, 110, 132, 203 Х молекулы точечной группы Dia, предположение о более общей квадратичной потенциальной функции 20Э Х , молекулы точечной группы Of 21 ХоСО, плоские колебания как функция массы X 218, 219 XYa, молекулы, линейные, симметричные влияние ангармоничности на колебательные уровни 230 вращательная постоянная D 26 выражения для основных частот и силовых постоянных 172 в более общей системе сил 204 в системе постоянных валентных сил 190 изотопический эффект 249 колебательный момент количества движения 88, 403 координаты симметрии 172 кориолисово взаимодействие 402, 403 междуатомные расстояния 424, 426  [c.614]

XoYjY , изотоп молекулы 253 XVZ, молекулы, линейные (см. также Линейные молекулы) влияние ангармоничности на колебательные уровни 230 вращательные постоянные Z) и a 26,405 выражение для частот нормальных колебаний и силовые постоянные 191, 209 изотопический эффект 250  [c.615]


Смотреть страницы где упоминается термин Линейные молекулы) колебаний и силовые постоянны : [c.607]    [c.615]    [c.616]    [c.618]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.191 , c.209 ]



ПОИСК



C—D колебание силовые постоянные

X2Yj, молекулы, линейные, симметричные колебаний и силовые постоянны

Валентные силы, вычисление частот колебаний и силовых постоянных для линейных и нелинейных молекул

Валентные силы, вычисление частот колебаний и силовых постоянных для линейных молекул

Колебания линейные

Колебания молекул

Линейные молекулы

Молекулы типа XYa. Пирамидальные молекулы типа XY3. Линейные молекулы типа X2Y2. Тетраэдрические молекулы типа XY4. Плоские молекулы типа Х2У, (метод Сезерланда и Деннисона). Другие молекулы, Сравнение силовых постоянных различных молекул, характеристические частоты, валентные и деформационные колебания и другие родственные проблемы

Силовые постоянные

Силовые постоянные и молекулы



© 2025 Mash-xxl.info Реклама на сайте