Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Линейные молекулы числа колебаний каждого типа симметрии

В случае молекул точечной группы 1)зн, а также аналогичных молекул с плоскостью симметрии, перпендикулярной оси третьего или более высокого порядка, в отдельных ветвях подполосы (+/), К = 1 происходит чередование интенсивности, так как уровни Л) и Л 2 имеют различные статистические-веса в зависимости от величины ядерного спина одинаковых ядер. Однако-в каждой из двух ветвей, на которые расщепляется данная ветвь из-за удвоения -типа, чередование интенсивности происходит противоположным образом. Поэтому чередование интенсивности не будет наблюдаться до тех пор, пока не будут разрешены компоненты атого удвоения. Если в ветвях такой пары отсутствуют чередующиеся линии, то в результате будет наблюдаться одна ветвь с одиночными линиями, но с колебанием вращательной структуры аналогично тому, как это происходит в полосах П — П симметричных линейных молекул с нулевым ядерным спином одинаковых ядер. Амплитуда изменения интенсивности при чередовании зависит от числа одинаковых ядер и их спина точно так же, как в подполосах с К = О переходов А — А (см. выше).  [c.239]


D,h, точечная группа (типы симметрии и характеры) 19, 23, 32, 14 , 47, 538 Dihr молекулы точечной группы D h-правила отбора 274, 277, 472 нормальные колебания 05— 06 число колебаний каждого типа симметрии 57 />вА> точечная группа (типы симметрии и характеры) 19, 23, 30, 41, 47 Dth, молекулы точечной группы D h-правила отбора 274, 39 , 472 нормальные колебания 105, 133 число колебаний каждого типа симметрии 157, 391 Deh, точечная группа 20, 23, 434, 538 типы симметрии и характеры 132, 142, 147, 391 распадение на типы симметрии других точечных групп 255, 391 Dooh, молекулы точечной группы Dooh (см. также линейные молекулы) внутренняя статистическая сумма 540 правила отбора 31—32, 274, 408  [c.632]

Снова нужно рассмотреть возмущения типа Ферми и Кориолиса, каждое из которых может вызвать колебательные или вращательные возмущения. Взаимодействовать могут только уровни с одинаковой полной симметрией, с одинаковыми числами J и с ААГ=0, 1. За исключением отличия в типах симметрии, рассуждения совершенно аналогичны нашим прежним рассуждениям для случаев линейных молекул. Однако нужно учитывать, 410 вращательные уровни Е не могуг быть расщеплены каким бы то ни было взаимодействием врап1ения и колебания (см. Вильсон [934]). В отличие от действия сил Кориолиса, рассмотренного выше, которое приводит к расщеплению вырожденных колебательных уровней при увеличении числа К и является эффектом первого порядка, кориолисовы возмущения, рассматриваемые нами сейчас, являются эффектами второго и более высоких порядков, так как они обусловлены взаимодействием двух различных колебаний в результате наличия сил Кориолиса. Как и для линейных молекул, в данном случае этот эффект обычно весьма мал. Для молекул, принадлежащих к точечной группе Сщ, из правила Яна, приведенного ранее (стр. 404), сразу вытекает, что возможны кориолисовы возмущения между колебательными уровнями Ai и Е, А-, и Е, Ai я А , Е и Е. Для первых двух пар уровней возмущение должно возрастать с увеличением числа J, для последних двух пар оно должно возрастать с увеличением числа К. До сих пор ни один из подобных случаев не изучался подробно. Частным случаем таких возмущений является удвоение типа К, рассмотренное выше, т. е. расщепление уровня с данным J и при условии, что типы полной симметрии двух составляющих уровней являются  [c.443]


Кориолисово расщепление вращательных уровней. Мы видели выше, что каждый вращательный уровень с заданным значением J состоит из ряда подуровней (всего из I подуровней). В том приближении, в котором справедливы формулы (4,77) и (4,78), эти подуровни совпадают друг с другом. Однако если принять во внимание более тонкие взаимодействия вращения и колебания, то происходит расщепление по причинам, аналогичным причинам, вызывающим /-удвоение уровней в линейных молекулах (см. стр. 406). Однако расщепление может произойти лишь на такое число уровней, со слегка отличной друг от друга энергией, которое равно числу различных яиний на фиг. 138. Дважды вырожденные вращательные подуровни типа Е и трижды вырожденные вращательные подуровни типа F не расщепляются на две или соответственно три компоненты, так как все рассматриваемые более тонкие взаимодействия имеют тетраэдрическую симметрию. Этот тип вырождения мог бы быть снят только внешним полем.  [c.480]


Смотреть страницы где упоминается термин Линейные молекулы числа колебаний каждого типа симметрии : [c.615]    [c.363]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.156 , c.158 ]



ПОИСК



SU (3)-Симметрия

Каждая

Колебания линейные

Колебания молекул

Линейные молекулы

Симметрия колебания

Типы колебаний

Типы колебаний симметрии

Типы симметрии

Число колебаний

Число молекул

Число симметрии



© 2025 Mash-xxl.info Реклама на сайте