Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вырожденные комбинационные полосы симметричных волчков

Вырожденные комбинационные полосы симметричных волчков 472, 474 тетраэдрических молекул 486 Вырожденные координаты симметрии. 163, 173  [c.600]

Исследование вращательных комбинационных и инфракрасных спектров аммиака (см. г.ч. I) показало, что молекула NH,, является симметричным волчком, обладающим постоянным электрическим дипольным моментом. Наиболее простое объяснение этого экспериментального факта состоит в предположении, что молекула аммиака образует пирамиду с атомом азота в вершине. Однако возможны и другие предположения. Хотя результаты исследования вращательного инфракрасного спектра совершенно исключают возможность плоской симметричной структуры (точечная группа D,/,, см. фиг. 1, S), так как такая структура не обладает дипольным моментом, но они не исключают несимметричную структуру, при которой молекула имеет два равных или почти равных момента инерции (например, плоскую несимметричную модель с симметрией или пирамидальную несимметричную модель с симметрией С ). Однако в этом случае молекула должна была бы иметь шесть основных частот, в то время как при предположении о симметричной пирамидальной структуре (точечная группа Сз,,) получаются только четыре частоты две полностью симметричные Ai и две дважды вырожденные Е (см. табл. 36). На основе последнего предположения может быть дано удовлетворительное истолкование большого числа полос в обычной и фотографической областях инфракрасного спектра, а также линий комбинационного спектра. Не имеется никаких данных о  [c.318]


Комбинационные частоты 269, 271 Контур неразрешенных полос как индикатор типа полос 416,473, 514 Контурные линии, представление потенциальных поверхностей 220 Координаты симметрии в системе валентных сил 164 Координаты смещения,отношение к нормальным координатам 81. 83, 86, 87, 95, 160, 183 Кориолисово взаимодействие в асимметричных волчках 495 в линейных молекулах 400 в симметричных волчках 429. 435, 463 в тетраэдрических молекулах 475, 480 доля во вращательной постоянной а 401 как причина появления запрещенных колебательных переходов 486 как причина снятия вырождения 433.435 как причина удвоения / 404 правила отбора 404, 443, 475, 479, 486, 495 Кориолисово расщепление влияние на структуру полосы 457, 469, 472,481, 486  [c.603]

Переходы Е — А,. Если верхнее состояние комбинационной полосы тетраэдрической молекулы является дважды вырожденным, то могут появляться все пять ветвей, определенные условиями (4,88). В подобном случае можно ожидать, что структура полосы будет очень схожа со структурой полносимметричной комбинационной полосы симметричного волчка. Различие должно проявляться лишь в распределении интенсив-иостей линий, которое будет менее закономерным. До сих пор ни одна из таких полос не была наблюдена экспериментально. Так как ири колебании (е) не имеется колебательного момента количества движения, то расстояние между последовательными линиями Р, R и О, S ветвей должно равняться 2В и 46 соответственно. Вращательные линии в спектрах Hj, S1H4 и GeHj при более высоких значениях J должны расщепляться вследствие кориолисова взаимодействия с близким по частоте колебанием V4(/s).  [c.487]


Смотреть страницы где упоминается термин Вырожденные комбинационные полосы симметричных волчков : [c.473]    [c.619]    [c.638]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.472 , c.474 ]



ПОИСК



274, 323—327 симметричный

Волосевич

Волчков

Волчок

Волчок симметричный

Вырождение

Вырожденные комбинационные полосы

Газ вырожденный

Комбинационное эхо

Комбинационные полосы

Ле, Л[0], Ару Врр >Э 0 Вру симметричных волчков



© 2025 Mash-xxl.info Реклама на сайте