Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства осреднения характеристик турбулентного движения

Свойства осреднения характеристик турбулентного движения 248  [c.565]

Итак, наряду с явлениями вязкости и теплопроводности, развивающимися на микрофизическом уровне, в жидких и газообразных средах существует турбулентная вязкость и турбулентная теплопроводность, которые обусловливаются возникающим при определенных обстоятельствах макроскопическим пульсацион-ным движением молей. В отличие от коэффициентов и X коэффициенты iJ.,f и только отчасти зависят от физических свойств данной среды, определяемых ее внутренним состоянием, главным же образом эти характеристики турбулентной структуры течения зависят от конфигурации и размеров поля, от уровня осреднен-ных скоростей, от первоначальной организации потока и от других внешних факторов. Кроме того, величины и Х могут меняться и действительно меняются от места к месту. Вместе с тем, как показывает опыт, коэффициенты [j.,,, и Х. , часто в тысячи раз превосходят величины р. и л, вследствие чего в таких случаях механизм турбулентного обмена становится абсолютно доминирующим.  [c.78]


О некоторых методах моделирования турбулентности. Помимо статистического подхода к моделированию турбулентности в настоящее время все более широкое применение находит феноменологический (полуэмпириче-ский) подход и методы прямого численного моделирования турбулентности на основе решения специальных кинетических уравнений или нестационарной системы трехмерных уравнений Навье-Стокса, хотя в силу стохастичности данного явления в реальности удается получать лишь осредненные характеристики движения. Это позволяет, тем не менее, иногда проследить не только эволюцию образований различных пространственных структур с течением времени, но также изучать общую динамику и природу развития турбулентности. Например, результаты численного моделирования явления перебросов в гидродинамической системе (сконструированной в виде многоярусной модели зацепления простейших элементов - триплетов) иллюстрируют каскадный процесс передачи энергии в развитом турбулентном потоке, соответствующий известному закону Колмогорова-Обухова Гледзер и др., 1961) и подкрепляют представления об общих свойствах в поведении динамических систем. Интересно также отметить, что исследование процесса стохастизации динамических систем и сценариев перехода к хаосу при численном моделировании турбулентности служит аналогом решения некорректных задач с использованием оператора осреднения и параметрического расширения Тихонов и Арсенин, 1986). При таком подходе упорядоченная структура турбулентного течения, которая определяется как аттрактор асимптотически устойчивого решения для осредненных величин, представляет собой его регуляризованное описание Белоцерковский, 1997). Следует однако заметить, что использование методов прямого численного моделирования турбулентности для решения практически важных задач (особенно задач, связанных с расчетами турбулентного тепло-и массопереноса в многокомпонентных химически активных смесях) часто затруднительно или является слишком громоздким. Поэтому подобные задачи целесообразнее решать с помощью более простых, полуэмпирических теорий.  [c.16]

Постараемся математически описать класс полей скорости и х, /). мелкомасштабные пульсации которых статистически однородны, изотропны и стационарны. Для этого прежде всего надо выделить характеристики рассматриваемых полей, не зависящие от крупномасштабных компонент движения. В качестве таких характеристик сами значения и х, () использованы быть не могут, так как они определяются в основном осредненным течением. Разделение скорости и на среднюю и пульсационную компоненты и и и —и — и выделяет компоненту скорости и (х, t), не зависящую от среднего течения но значения и (х, t) определяются в первую очередь самыми крупными возмущениями масштаба 1 — Ь, имеющими наибольшие амплитуды. Естественно попытаться выделить интересующие нас мелкомасштабные пульсации с помощью разложения Фурье (именно так мы и поступали в п, 16.5 гл. 7 однако, поскольку поле и х,1) теперь не предполагается однородным, такому разложению нелегко придать точный смысл. Поэтому проще всего при определении мелкомасштабных свойств турбулентности исходить из того, что эти свойства должны проявляться лишь в относительном движении жидких частиц в малых объемах пространства и в течение малых промежутков времени к абсолютному же движению отдельных объемов жидкости (определяемому главным образом осредненным течением и наиболее крупными возмущениями) они не могут иметь отношения. Таким образом, при математическом изучении свойств мелкомасштабных компонент движения целесообразно, следуя Колмогорову (1941а), рассматривать только относительные движения жидких частиц, т. е. их движения по отношению к какой-то фиксированной жидкой частице, находящейся с ними в одном и том же малом объеме.  [c.313]



Смотреть страницы где упоминается термин Свойства осреднения характеристик турбулентного движения : [c.151]    [c.518]   
Механика сплошной среды. Т.2 (1970) -- [ c.248 ]



ПОИСК



434, 436 — Характеристики свойств

434, 436 — Характеристики свойств свойств

Движение осредненное

Движение турбулентное

Осреднение

Осреднение характеристик турбулентного движения

Свойства движения

Турбулентность характеристика

Характеристики турбулентного движения

Характеристики турбулентных



© 2025 Mash-xxl.info Реклама на сайте