Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Закон сохранения и превращения энерги

Первый закон термодинамики представляет собой частный случай всеобщего закона сохранения и превращения энергии применительно к тепловым явлениям. В соответствии с уравнением Эйнштейна Е = тс надо рассматривать единый закон сохранения и превращения массы и энергии. Однако в технической термодинамике мы имеем дело со столь малыми скоростями объекта, что дефект массы равен нулю, и поэтому закон сохранения энергии можно рассматривать независимо.  [c.14]


Закон сохранения и превращения энергии является фундаментальным законом природы, который получен на основе обобщения огромного количества экспериментальных данных и применим ко всем явлениям природы. Он утверждает, что энергия не исчезает и не возникает вновь, она лишь переходит из одной формы в другую, причем убыль энергии одного вида дает эквивалентное количество энергии другого вида.  [c.14]

Открытие закона сохранения и превращения энергии, этого основного закона естествознания, как указывал неоднократно Энгельс, оказало решающее влияние на все последующее развитие  [c.9]

Закон сохранения и превращения энергии  [c.52]

Первый закон термодинамики является частным случаем общего закона сохранения и превращения энергии применительно к процессам, протекающим в термодинамических системах.  [c.52]

Закон сохранения и превращения энергии гласит, что в изолированной системе сумма всех видов энергии является величиной постоянной. Из этого закона следует, что уменьшение какого-либо вида энергии в одной системе, состоящей из одного или множества тел, должно сопровождаться увеличением энергии в другой системе тел.  [c.52]

Лишь через сто лет после Ломоносова, в первой половине XIX в., наука вплотную подошла к открытию закона сохранения и превращения энергии и эквивалентности теплоты и работы.  [c.52]

Первый закон термодинамики, являясь частным случаем общего закона сохранения и превращения энергии, утверждает, что теплота может превращаться в работу, а работа в теплоту, не устанавливая условий, при которых возможны эти превращения.  [c.107]

Открытие же всеобщего закона сохранения и превращения энергии приписывают обычно Р. Майеру или Джоулю. Но никакое крупнейшее открытие не может принадлежать одному человеку. В частности, открытие этого закона было подготовлено трудами Декарта, Гюйгенса, Лейбница, Ломоносова, Сади Карно и многих других ученых. Постановка этой проблемы и, в частности, изучение перехода тепловой энергии в механическую было вызвано в первой половине XIX в. развитием промышленности и применением паровых машин, практически осуществляющих этот переход.  [c.400]

При движении тела вблизи земной поверхности на тело кроме силы тяжести действуют различные диссипативные силы, например сила сопротивления воздуха, поэтому закон сохранения механической энергии здесь неприменим происходит рассеяние механической энергии, переход ее в другие немеханические виды. Вместе с тем и немеханические виды энергии могут переходить в механическую энергию. Переход не только механической, но и всякой другой энергии из данного вида в эквивалентное количество энергии всякого другого вида подчинен всеобщему закону сохранения и превращения энергии, изучаемому в курсах физики. Согласно этому закону во всякой изолированной системе сумма энергий всех видов (кинетической, потенциальной, тепловой, электрической и т. п.) остается постоянной.  [c.242]


Этот экспериментально установленный факт называется законом сохранения и превращения энергии..  [c.51]

Это выражение закона сохранения и превращения энергии называется первым законом термодинамики.  [c.95]

Позже был установлен закон сохранения и превращения энергии. Но энергия связана известным из релятивистской механики соотно-щением с массой, и этим объясняется зависимость между законами сохранения движения и материи. Впрочем, здесь достаточно вспомнить, что движение — форма существования материи.  [c.233]

Затишье перед бурей. XIX столетие ознаменовалось целым рядом достижений в физике. К ним относятся достижения в области электричества и магнетизма, которые привели к теории электромагнитного поля Максвелла и позволили включить оптику в рамки электромагнитных явлений значительный прогресс в развитии классической механики, которая достигла особой стройности и законченности благодаря блестящим математическим исследованиям разработка универсальных физических принципов, среди которых на первое место следует поставить закон сохранения и превращения энергии. Неудивительно, что к концу века стало складываться убеждение в том, будто физическое описание законов природы близко к окончательному завершению.  [c.34]

Термодинамика возникла из потребностей теплотехники . Развитие производительных сил стимулировало ее создание. Широкое применение в начале XIX в. паровой машины поставило перед наукой задачу теоретического изучения работы тепловых машин с целью повышения их коэффициента полезного действия. Это исследование было проведено в 1824 г. французским физиком, инженером Сади Карно, доказавшим теоремы, определяющие наибольший коэффициент полезного действия тепловых машин. Эти теоремы позволили впоследствии сформулировать один из основных законов термодинамики — второе начало. В 40-х годах XIX в. в результате исследований Майера и Джоуля был установлен механический эквивалент теплоты и на этой основе открыт закон сохранения и превращения энергии, называемый в термодинамике ее первым началом. Энгельс назвал его великим основным законом движения , устанавливающим основные положения материализма. Закон сохранения и превращения энергии имеет как количественную, так и качественную стороны. Количественная сторона закона сохранения и превращения энергии состоит в утверждении, что энергия системы является однозначной функцией ее состояния и при любых процессах в изолированной системе сохраняется, превращаясь лишь в строго определенном количественном соотношении эквивалентности из  [c.10]

Первое начало термодинамики выражает количественную сторону закона сохранения и превращения энергии в применении к термодинамическим системам.  [c.12]

Первое начало термодинамики является математическим выражением количественной стороны закона сохранения и превращения энергии в применении к термодинамическим системам. Оно было установлено в результате экспериментальных и теоретических исследований в области физики и химии, завершающим этапом которых явилось открытие эквивалентности теплоты и работы, т. е. обнаружение того, что превращение теплоты в работу И работы в теплоту осуществляется всегда в одном и том же строго постоянном количественном соотношении.  [c.36]

Из приведенной исторической справки видно, что потребовался ряд десятилетий, чтобы наука могла найти путь от простого убеждения о невозможности вечного двигателя до современной формы закона сохранения и превращения энергии.  [c.36]

Таким образом, если первое начало есть закон сохранения и превращения энергии (его количественная сторона в применении к термодинамическим системам), то второе начало представляет собой закон об энтропии.  [c.49]

Закон сохранения и превращения энергии имеет как количественную, так и качественную стороны. Количественная сторона закона сохранения и превращения энергии состоит в утверждении, что энергия системы является однозначной функцией ее состояния и при любых процессах в изолированной системе сохраняется, превращаясь лишь в строго определенном количественном соотношении эквивалентности из одного вида в другой. Качественная сторона этого закона состоит в никогда не утрачиваемой способности материального движения к новым превращениям.  [c.10]


Хотя закон сохранения и превращения энергии (как и само понятие энергии — меры движения) применим только к физическим формам движения (см. 2) и неприменим к высшим формам движения материи (биологическое и общественное движение), тем не менее он имеет всеобщее значение. Это следует из общности физических форм движения всякая более высокая форма движения материи содержит в себе физические формы движения, хотя и не сводится к ним. И если при превращении одной физической формы движения в другую одна из них исчезает (частично или полностью), а вторая количественно увеличивается превращение механического движения в тепловое, электромагнитное и наоборот и т. д.), то при возникновении новой, более высокой формы движения материи порождающие ее различные физические формы движения не исчезают, а существуют как их высшее единство . Разрушение этого единства приводит к исчезновению более высокой формы движения и высвобождению как самостоятельных, порождающих ее различных физических форм движения, которые имеют своей мерой энергию.  [c.10]

В виде оформленной научной системы, исходящей из работ Карно и закона сохранения и превращения энергии, термодинамика появилась в 50-х годах XIX в, в трудах Клаузиуса и Томсона (Кельвина), давших современные формулировки второго начала и введших важнейшие понятия энтропии и абсолютной температуры. Основным методом исследования в термодинамике XIX в. был метод круговых процессов.  [c.10]

Установление принципа эквивалентности было последним этапом в формировании количественной стороны закона сохранения и превращения энергии, вследствие чего дата установления этого принципа обычно отождествляется с датой открытия первого начала термодинамики.  [c.30]

В период 1840—1850 гг. ряд ученых приходит к частичному утверждению закона сохранения и превращения энергии и, наконец, к признанию этого закона трудами Майера, Джоуля, Гельмгольца, русских академиков Г. И. Гесса и Э. X. Ленца.  [c.7]

Закон сохранения и превращения энергии представляет собой основу, на базе которой развивалась термодинамика, и поэтому он называется первым законом или первым началом термодинамики.  [c.7]

Из этого положения следуют закон эквивалентных превращений энергии и закон сохранения и превращения энергии.  [c.26]

Всеобщий закон сохранения и превращения энергии трансформируется в термодинамике в первое начало или первый закон термодинамики . Его положения будут рассмотрены в главе IV.  [c.26]

Первый закон термодинамики представляет собой математическое выражение общего закона сохранения и превращения энергии. Он рассматривает любые взаимопревращения энергии и изучает явления в этих взаимопревращениях, в частности при осуществлении различных термодинамических процессов. Но этот закон не определяет условий возможности таких преобразований согласно этому закону равновозможны оба направления в протекании процесса, т. е. перетекание теплоты от теплого тела к холодному и от холодного тела к теплому. Между тем действительные процессы, происходящие вокруг нас, необратимы, так как они самопроизвольно идут только в одном направлении теплота идет от теплого тела к холодному, газ вытекает только из резервуара с высоким даЕ лением в окружающее пространство и т. п. Опыт показывает, что все процессы идут в направлении установления в любой системе равновесия, т. е. выравнивания в ней давлений, температур, концентраций и др.  [c.63]

В этих строках, по существу, заложены основы закона сохранения вещества и закона сохранения и превращения энергии. Только через столетие благодаря работам Лавуазье, Майера, Гельмгольца и других эти законы получили всеобщее признание. Отдавая должное гениальному предвидению М. В. Ломоносова, закон сохранения вещества и энергии часто называют его именем.  [c.10]

Таким образом, к концу XVHI в. процесс пр.евращения теплоты в работу был осуществлен, но без всяких теоретических расчетов и обоснований. Общую формулировку закона сохранения и превращения энергии дал великий русский ученый М. Б. Ломоносов. Однако Ломоносов не мог установить эквивалентность различных форм движения материи и дать количественную связь между ними, так как не имел необходимых для этого фактических данных.  [c.52]

Таким образом, закон сохранения и превращения энергии, открытый М. В. Ломоносовым, но не получивший широкого развития при его лсизни, во второй половине XIX в. получил полное признание.  [c.53]

Первый закон термодинамики является частным случаем закона сохранения и превращения энергии, впервые установленного основоположником русской науки М. В. Ломоносовым в замечательной по своей широте и значению формулировке закона сохранения и неунич-тожаемости материи, движения и силы.  [c.51]

После крушения теории теплорода теплота окончательно рассматривается как энергия движения составляющих тело материальных частиц (атомов, молекул). Но между теплотой и механической энергией вскоре обнаружились принципиальные отличия. Например, при торможении автомобиля его тормозные колодки нагреваются, но обратный процесс абсолютно невозможен — сколько бы мы ни нагревали колодки, автомобиль все равно останется на месте. Закон сохранения и превращения энергии, раскрывая количественную сторону превращений энергии, ничего не говорит о принцигшальных качественных отличиях между ее различными формами. Можно указать на другие принципиальные особенности тепловых явлений. Одним из самых очевидных наблюдений является то, что при различных видах работы часть энергии выделяется в виде теплоты. В природе существует тенденция к необратимому превращению различных видов энергии в теплоту, поскольку обратное превращение тепла в работу, за исключением изотермических процессов, невозможно. Другой, не менее очевидной особенностью тепловых явлений является то, что нагретые тела всегда стремятся прийти в равновесие с окружающей средой. Но и в этих процессах передачи теплоты существует односторонность, которую Р. Клаузиус сформулировал в качестве тепловой аксиомы Теплота не может сама собой переходить от тела холодного к телу горячему . Значение этого положения оказалось настолько важным, что его стали рассматривать как одну из формулировок второго начала термодинамики. Л. Больцман писал Наряду с общим принципом (законом сохранения и превра]цения энергии. — О. С.) механическая теория тепла установила второй, малоутешительным образом ограничивающий первый, так называемый второй закон механической теории тепла. Это положение формулируется следующим образом работа может без всяких ограничений превращаться в теплоту обратное превращение тепла в работу или совсем невозможно, или возможно лишь отчасти. Если и в этой формулировке второй принцип является неприятным дополнением к первому, то благодаря своим последствиям он становится гораздо фатальнее .  [c.79]


Энгельс подверг взгляды Клаузиуса резкой критике, показав, что концепция тепловой смерти Вселенной противоречит закону сохранения и превращения энергии, так как этот закон, как мы уже отмечали, говорит не только о количественной неунич-тожимости движения материи, но и о неутрачиваемой способности к качественным превращениям различных форм движения одна в другую.  [c.83]

Исторически термодинамика возникла из потребностей теплотехники. Развитие производительных сил стимулиров.ало ее создание. Широкое применение в начале XIX в. паровой машины поставило перед наукой задачу теоретического изучения работы тепловых машин с целью повышения их коэффициента полезного действия. Это исследование было проведено в 1824 г. в первом сочинении по термодинамике французским физиком и инженером Сади Карно, доказавшим теоремы, определяющие наибольший коэффициент полезного действия тепловых машин. Эти теоремы позволили впоследствии сформулировать один из основных законов термодинамики — второе начало. В 40-х годах XIX в. в результате исследований Майера и Джоуля был установлен механический эквивалент теплоты и на этой основе открыт закон сохранения и превращения энергии, называемый в термодинамике ее первым началом. Энгельс назвал его великим основным законом движения .  [c.9]


Смотреть страницы где упоминается термин Закон сохранения и превращения энерги : [c.95]    [c.210]    [c.239]    [c.78]    [c.291]    [c.11]    [c.10]   
Теплотехника (1986) -- [ c.11 ]



ПОИСК



Закон сохранения

Закон сохранения и превращения

Закон сохранения и превращения энергии

Закон сохранения и превращения энергии

Закон сохранения и превращения энергии и следствия из него

Закон сохранения импульса и превращения энергии всех

Закон сохранения энергии

Методологическое значение первого начала термодинамики — закона сохранения и превращения энергии

Основные понятия термодинамики Закон сохранения и превращения энергии Основные особенности термодинамики

Открытие закона сохранения и превращения энергии

Первое начало термодинамики— закон сохранения и превращения энергии

Первый закон термодинамики как форма закона сохранения и превращения энергии

Превращение

Силовое поле и закон сохранения и превращения механической энергии

Сохранение

Сохранение энергии



© 2025 Mash-xxl.info Реклама на сайте