Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Зона термического влияния участок нормализации

Зона термического влияния, участок нормализации. Максимальная температура незначительно превышала Асд. Образовался мелкозернистый аусте-ниг, который при охлаждении превратился в феррит (светлые участки) и перлит (темные участки). Величина зерна образовавшейся структуры меньше, чем в исходном состоянии. 100 1, (9) табл. 2.4,  [c.35]

Зона термического влияния (участок нормализации). Измельчение зерна. 100 1, (9) табл. 2.4.  [c.39]


Зона термического влияния. Слева участок растворения перлита, справа участок нормализации. 100 1, (9) табл. 2.4.  [c.44]

Металлографическое исследование показало, что структура такого слоя состоит из высоколегированного хромом и марганцем аустенита и карбидной эвтектики. Измерениями было установлено, что карбидная эвтектика имеет микротвердость Я 1069, аусте-нит Н 464, а основной металл (сталь 35Л) в зоне термического влияния Н 254. В зависимости от температуры нагрева при наплавке в зоне термического влияния образуются следующие структурные участки неполного расплавления, перегрева, нормализации и неполной перекристаллизации (рис. 155, а). Эта зона распространяется на глубину до 10 мм, т. е. примерно в 2 раза меньше, чем при обычной газовой сварке. Участок неполного расплавления практически неразличим и сливается с участком наплавленного металла.  [c.272]

Зона термического влияния 31В характеризуется неравномерным распределением максимальных температур нагрева в этой зоне можно различать участки старения 200—300° С отпуска 250—650° С неполной перекристаллизации примерно 700—870° С нормализации 840—1000° С перегрева 1000—1250° С и околошовный участок — несколько рядов черен, непосредственно примыкающих к линии сплавления,— от 1250° С до температуры плавления. Иа этом участке наиболее резко изменяется структура металла, понижающая качество сварного соединения.  [c.13]

Структуры зоны термического влияния легированных сталей, закаливающихся при быстром охлаждении после сварки, отличаются от структур, образующихся в низкоуглеродистой стали. Вместо участков перегрева и нормализации образуется участок полной закалки со структурой мартенсита, а вместо участка неполной перекристаллизации — участок неполной закалки со структурой мартенсита и феррита.  [c.218]

Зона термического влияния (рис. ПЗ) состоит из следующих участков 1 — неполного расплавления, 2 — перегрева, 3 — нормализации, 4 — неполной перекристаллизации, 5 — рекристаллизации и 6 — синеломкости. Участок неполного расплавления является переходным от наплавленного металла к основному. Он представляет собой область основного металла, нагретого несколько выше температуры плавления, и находится в  [c.217]

Если свариваемая сталь является закаливающейся при рассмотренном режиме сварки, то весь участок зоны термического влияния первого слоя шва, который при сварке второго слоя будет нагреваться выше Ас вновь после охлаждения будет закален. Для металла шва, который, как отмечалось ранее, обычно содержит меньше углерода, чем основной металл, режим дополнительного термического воздействия по кривой 1 (рис. VII. 18, б) может не приводить к закалке, а являться термической обработкой типа нормализации. В этом случае структура металла шва во всей зоне, на-  [c.362]


Зона термического влияния (фиг. 43) подразделяется на участок перегретого металла 2, участок нормализации 3 и участок неполной нормализации 4.  [c.90]

Участок нормализации имеет мелкозернистую структуру (мельче, чем у основного металла вне зоны термического влияния). Механические качества металла этого участка могут быть выше механических свойств основного металла, не затронутого действием тепла при сварке. Участок неполной нормализации имеет структуру, среднюю между структурой зоны нормализации и структурой основного металла. Механические качества этой зоны удовлетворительные.  [c.90]

Металлографические исследования показывают, что микроструктура металла на раскатанных кромках — крупнозернистая (видманштеттова), имеются поры и микротрещины. По мере удаления в глубь шва структура становится все более близкой к структуре исходного металла (участок нормализации с мелким зерном), а непосредственно в зоне сварки имеется участок перекристаллизации (старые зерна феррита, между которыми расположены новые, более мелкие зерна). Образцы сварного соединения, вырезанные поперек шва, выдерживают перегиб на 180° и испытания на разрыв при напряжениях 0,85—0,95 от предела прочности исходного металла. Разрыв образцов происходит в местах концентрации напряжении в зоне термического влияния, обусловленных наличием рисок и задиров на трубе, как правило, неизбежно появляющихся в формовочном устройстве втулочного типа. Наличие таких поперечных концентраторов напряжений не приводит к снижению прочности всей трубы, так как ее разрыв происходит не от осевых, а от радиальных напряжений, в два раза превышающих осевые.  [c.177]

Особенностями металлургических процессов при сварке плавлением являются весьма высокие температуры и кратковременность всех процессов. На рис. 153 показана структура зоны влияния (строение сварного шва) после затвердевания и распределение температуры в малоуглеродистой стали в зоне термического влияния. Наплавленный металл 1 (участок 0—1) имеет столбчатое (дендритное) строение, характерное для литой стали при ее медленном затвердевании. Если наплавленный металл или соседний с ним участок 1 был сильно перегрет, то при охлаждении на участке 2 зерна основного металла (низкоуглеродистой стали) имеют игольчатую форму, образуя грубоигольчатую структуру. Этот участок имеет крупнозернистую структуру и обладает наибольшей хрупкостью и весьма низкими механическими свойствами. На участке 3 температура металла не превышает 1000° С. Здесь имеет место нормализация, структура получается мелкозернистой с повышенными механическими свойствами по сравнению с основным металлом. На участке 4 происходит неполная перекристаллизация стали, так как температура нагрева находилась между критическими точками Ас1 и Асз. На этом Участке наряду с крупными зернами феррита образуются и мелкие зерна феррита и перлита.  [c.338]

На рис. V. приведены структурные превращения в зоне термического влияния. Наплавленный металл (участок 0—1) имеет дендритную столбчатую структуру из-за медленного затвердевания. По мере уменьшения нагрева металла структура его становится более мелкозернистой, в результате чего повышаются механические свойства. Участок неполного расплавления 1—2), соприкасаясь с наплавленным металлом вследствие высокого нагрева, имеет крупнозернистую структуру. Участок перегрева (2—3) имеет еще довольно крупные зерна, уменьшающие пластичность металла. На участке нормализации (3—4) структура получается мелкозернистой с повышенными механическими свойст-валш основного металла по сравнению с металлом, не подвергшимся нагреву.  [c.253]

Многослойной сваркой обеспечивается повышенная прочность металла шва и всего сварного соединения по сравнению с однослойной получается меньший участок перегретого металла в зоне термического влияния сварного соединения, достигается нормализация (отжиг) нижележащих слоев при наплавке последующих. Толщина слоя подбирается такой, чтобы металл предыдущего слоя приобретал мелкозернистое строение. Для сварки незакаливаю-щейся стали толщина слоя многослойного шва составляет 3-8 мм в зависимости от толщины и размеров изделия. Металл верхнего слоя шва рекомендуется отжечь газовым пламенем без присадочного металла.  [c.73]


Сварные швы. Наиболее ачабые места в аппаратуре — сварные швы и прилегающие к ним зоны, в которых при сварке возникают термические напряжения. Как известно, в процессе сварки металл нагревается неравномерно. В зоне сварного шва достигается температура плавления металла, а в прилегающих зонах температура металла намного ниже. На рис. 1-1Х схематически показано изменение температуры металла при сварке и указаны температурные интервалы на упрощенной диаграмме состояния железо — углерод. На участке 1—2 происходят плавление металла, на участке 2—3 — частичное оплавление со значительным ростом зерна участок 3—4 соответствует процессу нормализации структуры с измельчением зереи на участке 4—5 происходит частичная перекристаллизация, на участке 5—6—рекристаллизация зерен на участке 6—7 температура снижается с 400 до 200° С — в этом интервале температур наблюдается синеломкость у сталей, склонных к старению. Здесь по границам зерен скапливаются нитриды и карбиды и пластичность стали снижается. Нагрев до температур ниже 200 С ие вызывает изменения структуры и свойств стали. Следует отметить, что рассматриваемая схема является условной она использована для пояснения темперного влияния на структуру металла в процессе сварки.  [c.131]


Смотреть страницы где упоминается термин Зона термического влияния участок нормализации : [c.291]   
Справочник рабочего-сварщика (1960) -- [ c.171 ]



ПОИСК



Зона термического влияния

Нормализация



© 2025 Mash-xxl.info Реклама на сайте