Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гипотезы замыкания уравнений турбулентного движения

Гипотезы замыкания уравнений турбулентного движения 45  [c.311]

Формулировка задач, описывающих турбулентное течение, является в принципе приближенной, что обусловлено необходимостью замыкания уравнений турбулентного движения посредством дополнительных гипотез. В ряде случаев поставленные таким образом задачи имеют точное решение, что позволяет апробировать принятую гипотезу турбулентности.  [c.279]

Полученная при турбулентном режиме течения система уравнений (1.76) является незамкнутой. Необходимы дополнительные сведения о величине турбулентных составляющих напряжений Некоторые гипотезы, приводящие к замыканию уравнений, будут рассмотрены далее, в основном, на примере пограничного слоя. Если принять приближения пограничного слоя, то в случае установившегося течения несжимаемой среды уравнения неразрывности и движения могут быть получены из системы (1.76)  [c.43]


Уравнения Рейнольдса содержат 10 неизвестных и, следовательно, образуют незамкнутую систему. Замыкание системы сводится к установлению связей между турбулентными напряжениями и другими переменными, входящими в уравнения. Установление таких связей представляет трудную задачу в современной гидромеханике она решается на основе гипотез, выдвинутых рядом авторов применительно к простейшим случаям движения. Связи, получаемые на основе таких гипотез, содержат функции или константы, подлежащие определению из опытов, а совокупность применяемых для этого методов составляет содержание полуэмпирических теорий турбулентности. В следующем параграфе приведены минимально необходимые сведения о некоторых из этих теорий.  [c.100]

Трудности построения общей теории турбулентности повлекли изучение в первую очередь простейшего и, вообще говоря, очень узкого класса турбулентных движений — изотропной турбулентности. Начало исследованиям в этой области было положено Дж. Тейлором который сразу же и с успехом подверг некоторые выводы теории изотропной турбулентности экспериментальной проверке в потоке за решеткой а.эродинамической трубы. Т. Карман 299 дал затем соотношение между корреляционными функциями (вторыми моментами) изотропного поля скоростей (также подтвержденное экспериментально Тейлором) и, совместно с Л. Хоуартом, вывел основное динамическое уравнение, связывающее вторые и третьи моменты . Уравнение Кармана — Хоуарта послужило основой последующих исследований изотропной турбулентности и было также подтверждено (в 50-х годах) экспериментально. Однако это уравнение содержит две неизвестные функции и, как и все прочие уравнения турбулентного движения, требует для своего замыкания дополнительных гипотез. Такие гипотезы вводились, например, с помощью приближенных формул для спектрального переноса энергии (В. Гейзенберг,  [c.299]

Для замыкания системы уравнений, характеризующих течение, тепло- и массообмен при турбулентном движении закрученного потока, необходимы соотношения, связывающие осред-ненные и пульсационные характеристики процесса. Эти соотношения могут быть найдены на основе гипотез полуэмпирическо-го характера.  [c.23]

Метод замыкания системы уравнений для моментов (или спектральных функций) с помощью отбрасывания моментов некоторого порядка имеет определенное оправдание лишь в применении к слабой турбулентности с небольшим числом Рейнольдса, приближающейся к заключительному периоду вырождения. Но, согласно данным 15, этот период вырождения с большим трудом реализуется в лабораторных экспериментах, причем отвечающие ему движения жидкости лишь с натяжкой можно считать турбулентными в обычном смысле этого слова. Основной же интерес для теории турбулентности представляет противоположный случай развитой турбулентности с большим числом Рейнольдса, в которой турбулентное перемешивание, связанное с инерционным движением частиц жидкости, играет значительно большую роль, чем вязкое трение. В этом случае простое отбрасывание моментов определенного порядка приводит к совершенно неверным (а часто даже и бессмысленным) результатам поэтому здесь успеха можно добиться, лишь используя какие-то другие приемы замыкания системы уравнений для моментов. К настоящему времени разработан ряд тйких приемов (о некоторых из них мы еще будем говорить позже — в п. 19.6 и 29), но пока ни один из них не оказался вполне удовлетворительным (см. обсуждение этого вопроса в статье Крейчнана (1967)). Тем не менее, для того чтобы проиллюстрировать основные черты теорий, опирающихся на те или иные методы замыкания уравнений для моментов, и разъяснить характер получающихся при этом выводов, мы рассмотрим здесь сравнительно подробно наиболее старый (фактически предложенный еще в работах Миллионщикова (1941а, б)) и,.по-видимому, простейший из методов замыкания, не предполагающих, что все моменты некоторого порядка тождественно равны нулю. А именно, мы попробуем воспользоваться для замыкания уравнений относительно вторых и третьих моментов поля скорости рассматривавшейся в предыдущем параграфе гипотезой Миллионщикова об обращении в нуль семиинвариантов четвертого порядка поля скорости, позволяющей выразить четвертые моменты скорости через вторые. Предварительно, однако, мы скажем несколько слов по поводу общей гипотезы об обращении в нуль семиинвариантов скорости фиксированного порядка й- -1 4, позволяющей построить целую последовательность все  [c.248]



Смотреть страницы где упоминается термин Гипотезы замыкания уравнений турбулентного движения : [c.378]    [c.139]   
Методы и задачи тепломассообмена (1987) -- [ c.45 ]



ПОИСК



Гипотеза

Гипотезы замыкания уравнений турбулентного движения Буссинеску

Гипотезы замыкания уравнений турбулентного движения Ван Дрийста

Гипотезы замыкания уравнений турбулентного движения Прандтля

Движение турбулентное

Замыкание



© 2025 Mash-xxl.info Реклама на сайте