Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Водяной пар, вязкость теплоемкость

Изобарная теплоемкость, теплопроводность, динамическая вязкость, число Прандтля воды и водяного пара в состоянии насыщения [56] — см. также рис. 31  [c.77]

В элементах котельного агрегата температура стенки при протекании по трубам воды или перегретого пара мало отличается от температуры потока. Кроме того, при средних давлениях величины числа Прандтля остаются близкими к единице. Поэтому в обычных расчетах и С( принимается равным единице. Несколько иначе расчет ведется для случаев получения водяного пара при сверхкритических давлениях, где все физические свойства существенно зависят от температуры. Особенно резко это проявляется в том интервале температур, в котором имеет место всплеск теплоемкости и одновременно быстрейшее изменение теплопроводности и вязкости с температурой. Ширина этого интервала снижается по мере приближения сверху давления к критическому, но зато указанные особенности физических свойств становятся более подчеркнутыми.  [c.123]


Математическая модель рассматриваемой комбинированной энергоустановки состоит из трех частей. Первая из них предназначена для описания процессов, определяющих физические параметры рабочих тел, используемых в установке воды и водяного пара, равновесной низкотемпературной плазмы, кислородно-воздушного окислителя. К расчетным параметрам относятся термодинамические параметры (энтальпия, энтропия, теплоемкость, плотность) и параметры переноса (вязкость, теплопроводность, электропроводность).  [c.107]

Выше отмечалось, что для унификации основного оборудования (компрессоров, парогазовых турбин, холодильников-конденсаторов, водяных насосов и др.) в ПГТУ, работаюш,их по закрытой тепловой схеме с высокотемпературным ядерным реактором, в качестве сухого газа целесообразно применить азот (yN ) или окись углерода. Последние по своим теплофизическим свойствам — молекулярному весу (газовой постоянной), показателю адиабаты расширения (сжатия), теплоемкости, теплопроводности, вязкости и т. п.— близки к продуктам сгорания (воздуху). Следовательно, в ПГТУ с закрытой тепловой схемой рабочим телом может служить смесь азота или окись углерода с водяным паром. Это позволяет рассматривать одни и те же уравнения парогазовых смесей в ПГТУ как с открытой, так и с закрытой тепловыми схемами.  [c.32]

ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ ВОДЫ, ИЗОБАРНАЯ ТЕПЛОЕМКОСТЬ, ТЕПЛОПРОВОДНОСТЬ, ДИНАМИЧЕСКАЯ ВЯЗКОСТЬ, ЧИСЛО ПРАНДТЛЯ ВОДЫ И ВОДЯНОГО ПАРА В СОСТОЯНИИ НАСЫЩЕНИЯ  [c.217]

Процесс испарения в указанных аппаратах подчиняется закономерностям тепло-массообмена, хорошо изученным в настоящее время в связи с проектированием градирен, распыливающих сушилок, холодильников, оросительно-испарительного охлаждения и других установок, использующих эффект адиабатического испарения воды [1, 2]. Однако эти закономерности кинетики испарения воды применительно к солевым раство-. рам имеют свои особенности по сравнению с испарением чистой воды со свободной поверхности. Так, при кристаллизации в аппаратах с воздушным и вакуум-охлаждением массообмен протекает при непрерывном, изменении теплофизических параметров системы — теплоемкости и вязкости раствора, упругости и энтальпии водяного пара и др. В случае же образования кристаллогидратов в конкурентных точках происходит скачкообразное изменение физических и других свойств выпадающих кристаллов.  [c.341]


Графики теплоемкости, теплопроводности и вязкости воды и водяного пара  [c.21]

Приведены таблицы значений удельного объема, энтальпии, энтропии, изобарной теплоемкости, скорости звука, поверхностного натяжения, динамической вязкости, теплопроводности и числа Прандтля для воды и водяного пара, рассчитанных по уравнениям, рекомендованным Международной ассоциацией по свойствам воды и водяного пара для применения в промышленных расчетах. Таблицы термодинамических свойств охватывают область параметров до температуры 800 °С и давления 100 МПа (до 1000 °С при давлениях ниже 10 МПа), включая состояния насыщения. Для этой же области параметров даны и значения динамической вязкости. Предельная температура области применения данных о теплопроводности в зависимости от давления — от 800 до 500 °С.  [c.2]

Теплофизические свойства рабочих тел. Какими свойствами должно обладать рабочее тело, используемое в двигателях Стирлинга Ответ на этот вопрос заключен в свойствах переноса, характеризующихся вязкостью, коэффициентом теплопроводности, удельной теплоемкостью и плотностью. Эти свойства для воздуха, водорода, гелия, двуокиси углерода и водяного пара приведены в табл. 6.1.  [c.131]

Свойства воды и водяного пара на линии насыщения. Приведенные здесь таблицы теплофизических свойств воды и водяного пара на линии насыщения подготовлены А. А. Александровым и М. С. Трахтенгерцем по данным [1, 5, 7, 19]. Таблицы П. 1.1, П.1.2 получены расчетом по соответствующим соотношениям. Отклонения полученных значений от рекомендованных составляют температура насыщения до 0,02 К удельный объем до 0,05% энтальпия до 0,2 кДж/кг удельный объем воды до 0,08% энтальпия пара до 0,9 кДж/кг удельный объем пара до 0,1% теплоемкость воды до температуры 350 °С до 0,15% свыше 350 °С до 1—2% теплоемкость пара до температуры 360 С до 0,2% при температуре 373 °С до 10—12% динамическая вязкость воды при температуре до 330 °С — до 0,3%, при 330—370 С до 0,8%, при более высоких температурах до 6% динамическая вязкость пара при температуре до 300 °С — до 0,3%, при температурах от 300 до 350 °С до 0,5%, от 350 до 370 °С до 0,1%, свыше 370 °С до 6% теплопроводность воды до 0,6% теплопроводность пара при температурах ниже 340 °С до 0,7%, при более высоких температурах до 3% коэффициент поверхностного натяжения при температурах ниже 260 °С до 0,1%, при более высоких температурах (до 365 °С) до 4%.  [c.199]

Институт ядерной энергетики АН БССР совместно с рядом организаций работает над новым направлением в ядерной энергетике — применением диссоциирующих систем в качестве теплоносителей и рабочих тел АЭС. Выполненный комплекс исследований и проектные разработки АЭС различной мощности показывают [4—6], что применение диссоциирующей четырехокиси азота, обладающей положительными физико-химическими и теплофизическими свойствами, позволяют создать АЭС по простой одноконтурной схеме с газожидкостным циклом и газоохлаждаемым реактором на быстрых нейтронах. Применение четырехокиси азота позволяет улучшить технико-экономические показатели отдельных узлов и всей станции, а также облегчает техническое решение ряда важных вопросов. Выполненные экспериментальные работы, газодинамические расчеты и проектные разработки показывают, что турбина на N2O4 имеет в 3—4,5 раза меньшую металлоемкость и соответственно габариты, чем на водяном паре. Существует реальная возможность создания одновального турбоагрегата единичной мощностью 2000—3000 Мвт в одном агрегате [8]. Высокая плотность, теплоемкость, теплопроводность и низкая вязкость теплоносителя [12] позволяют резко сократить габариты и вес теплообменного оборудования, трубопроводов и систем АЭС, а также затраты мощности на прокачку теплоносителя [13].  [c.4]


Коэффициент пэаерг натяжения воды, изобарная теплоемкость, коэффициенты теплопроводвдсти динамической вязкости, число Прандтля для воды и водяного пара в состоянии насыщения  [c.234]

В закритической области вещество находится в однородном состоянии, и в нем отсутствует резкое разделение на отдельные фазы, что имеет место при пересечении пограничной кривой вдали от критической точки. Различие между жидкостью и паром в этой области носит лишь количественный характер, поскольку между ними можно осуществить непрерывный переход без выделения или поглощения скрытой теплоты изменения агрегатного состояния. Однако в указанных переходах непрерывный ряд микроскопических однородных состояний содержит области максимальной микроскопической неоднородности флуктуац ионного характера. Существование такой микроскопической неоднородности связано с падением термодинамической устойчивости первоначальной фазы и с возникновением внутри >нее островков более устойчивой фазы. Указанная внутренняя перестройка вещества, несмотря на свою нелрерывность, имеет узкие участки наибольшего сосредоточения, которые обусловливают появление резких скачков теплоемкости, сжимаемости, коэффициента объемного расширения, вязкости и других свойств вещества. Эти явления демонстрировались рис. 1-5, где был показан характер изменения критерия Прандтля для воды, и перегретого водяного пара от температуры и давления, и рис. 1-6 — для кислорода в зависимости от температуры при закритическом давлении. Из графиков следует, что при около- и закритиче-ских давлениях наряду с областями резкого изменения физических параметров имеются области, где они изменяются с температурой незначительно. При высоких давлениях в области слабой зависимости тепловых параметров от температуры теплоотдача подчиняется обычным критериальным зависимостям. В этом случае при проведении опытов можно не опасаться применения значительных температурных перепадов между стенкой и потоком жидкости, обработка опытных данныл также не  [c.205]

В книге Даны новые значения теплоемкости пара в идеальном состоянии, таблицы средних теплоемкостей пара й таблицы значений истинных теплоеМкортей при постоянном давлении и при постоянном объеме, вязкости и теплопроводности воды и водяного пара и их зависимости от температуры и давления.  [c.2]

Как уже говорилось, за рассматриваемый период, кроме исследований термодинамических свойств воды и водяного пара, были проведены исследования термодинамических свойств ряда других веществ, имеющих большое значение в современной энергетике. Здесь прежде всего следует назвать исследования Вукаловича, Кириллина, Ремизова, Силецкого и Тимофеева, результаты которых были ими изданы в виде большой монографии Термодинамические свойства газов (1953). В предисловии к ней записано в первой части книги даны основные сведения по теории и методам расчета величин, характеризующих термодинамические свойства газов. . . Рассмотрен также вопрос о влиянии давления на термодинамические величины. .. Во второй части книги приведены табличные материалы по теплоемкостям, энтальпиям и энтропиям одно-, двух- и трехатомных газов неорганического состава и большого числа углеводородов. .. Во второй части книги приведены наиболее надежные опытные данные по теплопроводности и вязкости технически важных газов.. . .  [c.315]


Смотреть страницы где упоминается термин Водяной пар, вязкость теплоемкость : [c.48]   
Справочник по теплофизическим свойствам газов и жидкостей (1972) -- [ c.45 ]



ПОИСК



Водяной пар

Водяной пар теплоемкость

Водяной пар, вязкость

Поверхностное натяжение воды, изобарная теплоемкость, теплопроводность, динамическая вязкость, число Праидтля воды и водяного пара в состоянии насыщения

Поверхностное натяжение воды, изобарная теплоемкость, теплопроводность, динамическая вязкость, число Прандтля воды и водяного пара в состоянии насыщения



© 2025 Mash-xxl.info Реклама на сайте