Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние на предельные амплитуды напряжений 139 — Разрушение

В результате испытаний на усталость для валов каждого режима упрочнения были определены предел выносливости по разрушению, соответствующий предельной амплитуде напряжений, не приводящей к разрушению вала на базе 10 циклов, и предел выносливости по трещинообразованию, соответствующий предельной амплитуде, не приводящей к образованию визуально видимой трещины в галтели вала при той же предельной базе испытаний. Обобщенная диаграмма изменения пределов выносливости исследованных валов в зависимости от режима обкатки галтели, полученная в результате экспериментов, показывает, что обкатка галтели приводит к изменению обоих пределов выносливости (рис. 58). Основное влияние на пределы выносливости оказывает усилие обкатки, а число проходов по обрабатываемой поверхности практически не изменяет пределов выносливости. Предел выносливости по трещинообразованию увеличивается только в области малых усилий обкатки, а затем, несмотря на существенный рост усилий обкатки, остается практически постоянным, а предел выносливости по разрушению увеличивается монотонно. Максимальное увеличение предела  [c.142]


Повышение прочности поверхностного слоя и влияние остаточных сжимающих напряжений приводят к повышению предельных амплитуд напряжений металла (соответствующих пределам выносливости) в поверхностных слоях. Это повышение следует рассматривать в связи с распределением напряжений и характеристики прочности в зонах возможного разрушения [23], [33].  [c.468]

Рис. 3.1. Влияние среднего напряжения на предельные амплитуды напряжений, определенные на базе 10 циклов до разрушения. Рис. 3.1. Влияние <a href="/info/7313">среднего напряжения</a> на <a href="/info/167120">предельные амплитуды напряжений</a>, определенные на базе 10 циклов до разрушения.
Концентрация напряжений 105, 106 — Влияние на предельные амплитуды напряжений 139 — Разрушение 157  [c.482]

С. В. Серенсен (1937) предложил принимать зависимость предельных амплитуд напряжений от средних напряжений цикла в форме линейной аппроксимации, выражая коэффициент, характеризующий влияние асимметрии цикла, через пределы выносливости при симметричном и пульсирующем циклах. Л. И. Савельев в 1955 г. предложил выражать этот коэффициент через предел выносливости при симметричном цикле и истинное сопротивление разрушению.  [c.406]

При определении коэффициента запаса прочности для конкретной детали надо учесть влияние коэффициента снижения предела выносливости ( тд)-Опыты показывают, что концентрация напряжений, масштабный эффект и состояние поверхности отражаются только на величинах предельных амплитуд и практически не влияют на предельные средние напряжения. Поэтому б расчетной практике принято коэффициент снижения предела выносливости относить только к амплитудному напряжению цикла. Тогда окончательные формулы для определения коэффициентов запаса прочности по усталостному разрушению будут иметь вид при изгибе  [c.562]

Влияние среднего напряжения цикла проявляется также в изменении критического радиуса надреза, обусловливающего-возникновение нераспространяющихся усталостных трещин. Как указывалось выше, критический радиус надреза при изгибе с вращением или растяжении-сжатии по симметричному циклу нагружения можно считать постоянным, не зависящим от глубины надреза и диаметра минимального сечения. Так как критический радиус надреза соответствует равенству предельных напряжений, необходимых для возникновения трещин и для полного разрушения образца (при этом возникновение трещины определяется главным образом амплитудой напряжения, а на распространение трещины влияет максимальное растягивающее напряжение), можно предположить, что критический радиус надреза Гкр должен зависеть от среднего напряжения От. Действительно, экспериментально определенный при осевом нагружении латуни критический радиус надреза Гкр зависит от среднего напряжения цикла. Так, для средних напряжений —50,  [c.90]


Наиболее интенсивное влияние усталости на 7 р отмечается на первых стадиях циклического нагружения [76, 78]. До 50% общего повышения критической температуры падает на первые 10—30% ресурса долговечности разрушающего числа циклов. При дальнейшем росте числа циклов предварительного циклического нагружения Т р повышается менее интенсивно, вплоть до появления усталостной трещины. Сопоставление предельных Т р вблизи усталостного разрушения при различных амплитудах напряжений позволяет предположить, что влияние трещин усталости на повышение критической температуры хрупкости зависит не только от их глубины, но и от предыстории нагружения, а именно — от амплитуды циклических напряжений.  [c.50]

Для рабочих лопаток турбин характерно асимметричное нагружение, при котором переменные вибрационные напряжения сравнительно небольшой амплитуды реализуются на фоне достаточно высоких средних напряжений вызванных вращением и изгибом от аэродинамической нагрузки (см. рис. 16.10). Отношение минимальных напряжений к максимальным (рис. 16.14) в цикле нагружения называется коэффициентом асимметрии цикла R . В частности, для симметричного цикла Rg = -1 и именно этим определяется обозначение предела усталости a j. Нагружение рабочих лопаток турбин характеризуется положительной асимметрией цикла, которая снижает сопротивление усталости, Влияние асимметрии устанавливается для каждого материала экспериментально и представляется в виде диаграммы предельных амплитуд цикла (рис. 16.15), по оси абсцисс которой откладывают среднее напряжение, а по оси ординат — амплитуду напряжений Од. Сама кривая является геометрическим местом точек заданной 1 усталостной долговечности. В частности, для случая отсутствия разрушения кривая будет проходить через точки Од = и ,  [c.437]

Диаграммы предельных напряжений для основных видов сварных соединений с максимальными остаточными напряжениями показаны на рис. 1. Они построены по данным усталостных испытаний сварных образцов сечением 200 х 30 мм. При таком сечении образцов остаточные напряжения проявляют свое влияние в полной мере. База испытаний составляла 10 циклов. Критерием разрушения служила начальная стадия развития усталостной трещины. Верхние части кривых 1—6 отсечены допускаемым уровнем напряжений по условиям статического нагружения. В рассматриваемых границах линии предельных напряжений сварных соединений наклонены под углом 45° к оси абсцисс. Это указывает на то, что предельные амплитуды сго практически не зависят от среднего напряжения  [c.115]

Влияние концентрации напряжений. О том, насколько тот или иной металл чувствителен к концентрации напряжений в условиях действия циклической нагрузки, судят обычно по значениям эффективного коэффициента концентрации напряжений эф = = о а.гл/<Га.н, где (Га.гл - прсдсльная амплитуда напряжений для гладкого образца <Га. - номинальная предельная амплитуда для образца с концентратором напряжений. Различают для амплитуды, среднего напряжения, асимметричного цикла с заданной степенью асимметрии, различных чисел циклов до разрушения No (в том числе соответствующих пределу усталости) и различных напряженных состояний (растяжения - сжатия и изгиба).  [c.172]


Несущая способность и расчеты деталей машин на прочность Изд3 (1975) -- [ c.157 ]



ПОИСК



Амплитуда

Амплитуда напряжений предельная

Влияние напряжений

Напряжение предельное

Напряжения амплитуда



© 2025 Mash-xxl.info Реклама на сайте