Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифракция электронов быстрых медленных

ОЭС, ДМЭ ДБЭ —дифракция быстрых электронов ДОБЭ — дифракция отраженных быстрых электронов ДНМЭ — дифракция неупруго отраженных медленных электронов ЭСИД — электронно-стимулированная ионная десорбция МСЭПЗ — масс-спектрометрия с  [c.151]

До 1964 в структурных исследованиях иснользовали лишь дифракцию быстрых электронов. Однако для анализа поверхностных структур более эффективным оказалось использование дифракции медленных электронов с энергией 10—100 эВ. Метод дифракции мод-ленных электронов основан на выборочной регистрации электронов, не испытавших неудругого рассеяния в веществе. Поскольку все электроны, проникающие в кристалл глубже чем на 1 нм, теряют часть энергии, распределение упруго отражённых частиц даёт информацию  [c.682]


Атомная структура поверхностного слоя. Специфика атомной структуры вблизи свободной П. твёрдых тел проявляется в т. н. поверхностных релаксации и реконструкции. При релаксации структура атомных плоскостей, параллельных П., сохраняется такой же, как в объёме, во межплоскостные расстояния у П. изменяются. Согласно данным, полученным методом дифракции медленных электронов, изменение (в большинстве случаев уменьшение) межплоскостно го расстояния у П. металлов обычно не превышает неск. % и охватывает, быстро затухая, лишь 2—3 приповерхностные плоскости.  [c.653]

В электронографах и электронных микроскопах формируется узкий светосильный пучок ускоренных электронов. Он направляется на объект и рассеивается им, дифракц. картина (электронограмма) либо фотографируется, либо регистрируется электронным устройством. Осн. вариантами метода являются дифракция быстрых электронов (ускоряющее напряжение от 30—50 кВ и более) и дифракция. медленных электронов (от неск, В до немногих сотен В).  [c.584]

Заканчивая рассмотрение основных закономерностей зарождения и размножения дислокаций вблизи свободной поверхности, следует отметить, что они могут быть обусловлены также особенностями атомно-электронной структуры и динамики кристаллической решетки в поверхностных слоях твердого тела [309-312], [380-413] и, как следствие этого, влиянием указанньгх факторов на особенности изменения соответствующих термодинамических параметров с учетом определенного удельного вклада термодинамических функций, относящихся к свободной поверхности кристалла [380, 414—422]. Принципиальная возможность появления такого рода эффектов предполагалась и обсуждалась в работах [108, 109,309 -312,368, 380, 414—453]. Причем, по-видимому, вклад этих эффектов будет максимально проявляться для систем, имеющих большую удельную долю поверхности и малые поперечные размеры (тонкие пленки, дисперсные системы и порошки, нитевидные кристаллы и др.). Еще несколько лет тому назад прямых экспериментальных данных по характеру атомно-электронной структуры и динамике кристаллической решетки в поверхностных слоях было очень мало, однако быстрое развитие в последнее десятилетие нового физического метода исследования поверхности твердого тела — метода дифракции медленных электронов (ДМЭ) позволило получить эти данные.  [c.123]


Исследования каталитического процесса и структуры поверхности катализатора в стационарном состоянии, когда участники реакции и продукты реакции появляются на поверхности и снова ее покидают, с помощью дифракции медленных электронов показали, что важнейшим фактором, который определяет каталитическую активность, является прочность сцепления адсорбированных частиц иа поверхности она прямо зависит от процесса перестройки. Если один из участников реакции связан слишком прочно, реакция является самоотравля-ющейся. Если адсорбция происходит недостаточно быстро, то скорость становится слишком низкой. Поэтому прежде чем начинать исследование реакции смеси газов, необходимо выяснить полностью поведение отдельных участников реакции.  [c.377]

Две блоховские волны, как предполагалось на фиг. 9.1, имеют разные коэффициенты поглощения, так как для блоховской волны 2 электроны проходят между рядами атомов, а для блоховской волны 1 они в основном проходят в непосредственной близости от атомов н поэтому имеют ббльшую вероятность поглощения. Из уравнений (9.6) и (9.7) следует, что интенсивность, определяемая интерференционным (косинусным) членом в направлениях падения и дифракции, уменьшается за счет экспоненциального множителя ехр — 1оН в то же время член с гиперболическим косинусом в обоих случаях состоит из двух частей, которым соответствуют два эффективных коэффициента поглощения цо Цл- С увеличением толщины кристалла Н интенсивность, отвечающая наибольшему коэффициенту поглощения, убывает быстрее интенсивности, отвечающей интерференционному члену, и для достаточно больших толщин интенсивность определяется только коэффициентом поглощения fio—fi/i- В таком случае интенсивности в направлениях падающего и дифрагированного лучей будут одинаковы. При условии, что составляет значительную часть цо, интенсивность каждого из этих пучков легко может превысить интенсивность пучка для ориентации, не отвечающей условию дифракции, для которой коэффициент поглощения равен Сопроцесс поглощения рентгеновских лучей в сильной степени локализован, так как он возникает в основном при возбуждении электронов с внутренних оболочек атомов. Таким образом, фурье-преобразование функции поглощения будет очень медленно убывать с расстоянием от начала обратного пространства, и значение yif , соответствующее направлению дифракционного пучка, может оказаться гораздо меньше значения цо Для прямого направления.  [c.211]

Для осуществленпя дифракции медленных электронов требуется вакуум 10 мм рт. ст. и выше, для дифракции быстрых электронов — 10 — —10 мм рт. ст. Э. для медленных электронов — приборы сравнительно небольших размеров, размещаемые внутри вакуумной камеры, Э. для быстрых электронов часто достигают весьма значительных размеров и веса. Так, Э. ЭГ-100А имеет размеры 980x1500x3000 и вес около 1,2 т(рис.З). Вакуум создается внутри т. п. колонны Э., к-рая состоит из осветительной системы, дифракционной камеры и блока регистрации (рис. 3 и 4). Промышленность  [c.508]

Э. п. применяются для изучения автоэлектронной эмиссии металлов и полупроводников, для определения работы выхода с разных граней монокристалла и пр. Для наблюдения фазовых превращений, изучения адсорбции атомов разл. в-в на металлич. или полупроводниковой поверхности и т. д. Э. п. используют весьма ограниченно, т. к. намного большие возможности в этих отношениях даёт применение ионного проектора. ЭЛЕКТРОНОГРАФ, прибор для исследования ат, строения тв. тел и газовых молекул методами электронографии. Э.— вакуумный прибор, схема той его части, где формируется электронный пучок, близка к схеме электронного микроскопа. В колонне, осн. узле Э., эл-ны, испускаемые раскалённой вольфрамовой нитью, разгоняются высоким напряжением (от 30 кВ и выше — быстрые эл-ны и до 1 кВ — медленные эл-ны). С помощью диафрагм и магн. линз формируется узкий электронный пучок, направляемый на исследуемый образец, находящийся в спец. камере объектов и установленный на спец. столике. Рассеянные эл-ны попадают в фотокамеру, и на фотопластинке (или экране) создаётся дифракц. изображение (электр онограмма). Зависимость интенсивности рассеянных эл-нов от угла рассеяния может измеряться с помощью электронных приборов, Э, снабжают разл. устройствами для нагревания, охлаждения, испарения образца, его деформации и т. д.  [c.891]



Смотреть страницы где упоминается термин Дифракция электронов быстрых медленных : [c.118]    [c.33]   
Металловедение и термическая обработка стали Справочник Том1 Изд4 (1991) -- [ c.2 , c.118 ]



ПОИСК



Дифракция

Дифракция электронная

Дифракция электронов

Дифракция электронов быстрых

Медленные ПЭС

Ось быстрая



© 2025 Mash-xxl.info Реклама на сайте