Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Речная латуни

Избирательная коррозия наблюдается преимущественно в латунях, реже в оловянных и алюминиевых бронзах и совсем редко в медноникелевых сплавах. При этом виде коррозии конфигурация изделия сохраняется, но вместо компактного сплава остается губчатая медь. Прокорродировавшие детали теряют свои прочностные свойства. Избирательная коррозия может возникнуть в морской, речной и водопроводной воде, растворах, содержащих хлориды, и в других агрессивных растворах. Сильно разбавленные растворы хлоридов в присутствии бикарбоната натрия способны вызвать избирательную коррозию почти любых латуней, включая и латуни, содержащие алюминий, и алюминиевые бронзы.  [c.119]


Способ включает обработку многослойного гальванического покрытия, содержащего кроме внешнего слоя хрома также Си, Ni, Ni—Со, латунь или бронзу. Для воздействия на покрытия применяют кремнезем (речной песок), АЬОз, стеклянные бусинки, пластики, покрытые абразивом, и другие частицы с твердостью, достаточной для деформации (образования пор, вмятин или трещин) хромового покрытия. Трещины возникают в случае высоконапряженного состояния хромового покрытия. Не исключено образование микропористости на слое хрома, если предварительно до хромирования обрабатывать абразивом подслой никеля или другого металла.  [c.244]

Углеграфитовые кольца и охватывающие их латунные секторы с пружинами уложены в пазы корпуса 5, расположенного вокруг вала и закрепленного на крышке турбины 7. Во время работы агрегата в полость А попадает речная вода, несущая некоторое количество песчаных частиц. Для защиты уплотнительных материалов от преждевременного износа в полость между кольцами подводится ио трубопроводу 6 чистая вода под давлением несколько большим, чем давление в полости А. В некоторых конструкциях вместо чистой воды в полость между кольцами подводится густая смазка.  [c.83]

Для легирования латуней используют А1, Fe, Ni, Sn, Si. Эти элементы повышают прочность и коррозионную стойкость латуней. Поэтому легированные латуни широко применяют в речном и морском судостроении (конденсаторные и манометрические трубки и другие детали).  [c.309]

Оборудование химических производств, контактирующее с нейтральными водными средами, преимущественно изготавливается из сталей различных классов, латуней (включая мышьяковистые), сплавов алюминия и титана, мельхиора. Основными видами оборудования, подвергающегося коррозии, являются всевозможные технологические аппараты, трубопроводы, соответствующая арматура и контрольные приборы, теплообменники и охладители, теплоэнергетическое оборудование заводских котельных и систем горячего водоснабжения, расходные и аккумуляторные баки и другие емкости, отстойники, фильеры, поглотители и абсорберы, насосы и др. Следует учитывать, что в системах охлаждения, оборудование которых эксплуатируется при температурах до 60 °С, используется преимущественно морская и речная вода в оборудовании, работающем при более высоких температурах, особенно в условиях парообразования, а также в адсорберах применяется в основном химически очищенная и обессоленная вода. В аппаратах, использующих воду Б качестве растворителя и реакционного агента, применяется химически обессоленная вода или вода высокой степени чистоты.  [c.10]


Из конструкционных материалов, применяемых для изготов- ления трубок конденсаторов и охладителей, наиболее распространены сплавы меди — латуни. Коррозионная стойкость их в речной воде существенно зависит от свойств образующихся на поверхности металла защитных пленок, состоящих из соединений меди и цинка. При работе конденсаторных трубок возникают условия, приводящие, к химическому или механическому разрушению этих пленок и, следовательно, к протеканию коррозии. Латунные трубки особенно подвержены коррозии в начальный период эксплуатации аппаратов, поскольку формирование защитной пленки требует определенного времени.  [c.50]

Механический способ создания сил -покрытий. Для осаждения покрытий с повышенной коррозионной стойкостью за счет образования пор в слое хрома многослойного покрытия по принципу сил -процесса (см. раздел 5.1.1) был предложен так называемый физический способ [340]. Он включает обработку многослойного покрытия, содержащего кроме внешнего слоя хрома также Си, N1, N1—Со латунь или бронзу. Для воздействия на слой хрома применяют кремнезем (речной песок), глинозем, стеклянные бусинки, пластики, покрытые абразивом, и другие частицы с твердостью, достаточной для деформации — образования пор, вмятин или трещин. Трещины возникают в случае высоконапряженного состояния хромового покрытия. Не исключено образование микропористости на слое хрома, если подслой никеля или другого металла предварительно (до хромирования) обрабатывать абразивом.  [c.254]

Легирование латуни А1, Ге, N1, 8п, 81 повышает коррозионную стойкость, поэтому сплавы применяют в речном и морском судостроении. Алюминий повышает прочность и твердость латуней, а вместе с N1, Ге, Мп, 81 позволяет упрочнять закалкой и старением до = = 700 МПа, а при использовании пластической деформации перед старением и до Од = 1000 МПа. Кремний улучшает жидкотекучесть, свариваемость и способность к деформированию.  [c.686]

За сравнительно небольшой период испытаний была отмечена высокая скорость коррозии образцов из латуни Л68, установленных после конденсатора (на речной воде) и особенно после водо-водяного подогревателя и основного сетевого подогревателя. Она примерно в 4 раза превышала скорость коррозии образцов, установленных после конденсатора с ухудшенным вакуумом. Тем не менее, даже при малой потере массы образцы конденсатора с ухудшенным вакуумом имели следы обес-цинкования. Образцы, установленные после конденсатора, находились в относительно благоприятных условиях, так как их испытания были проведены после начала отопительного сезона, в период, когда концентрация железа в сетевой-воде достигала 1,5 мг/кг. Ла-тунь Л070-1 и медь имели несколько большую коррозионную стойкость, чем латунь Л68.  [c.67]

Марки медных сплавов, наиболее широко используемых в СССР, приведены в табл. 10.2. В зависимости от химического состава и скорости течения воды используют различные марки металла (табл. 10.2) [1]. Среди условий, характеризующих коррозионную агрессивность среды, первостепенное значение имеют содержание хлоридов и скорость циркуляции. Если применяется пресная вода (речная, озерная) с содержанием хлоридов до 20 мг/л и со-лесодержанием до 300 мг/л, то при соблюдении общепринятых защитных мер трубы из меди и латуни Л68 характеризуются  [c.192]

И. П. Земляков [75] исследовал износостойкость капрона при абразивном изнашивании на установке типа крыльчатка- (фиг. 34). В качестве абразивной массы использовался электрокорунд зернистостью 150, 100 и 54, а также речной песок зернистостью 900—1600. Износ капроновых образцов сравнивался с износом образцов из стали 45, латуни (ЛМцС) и текстолита (ПТ). Результаты исследовангп приведены в табл. 7, нз которой следует, что наибольшей износостойкостью обладает латунь, затем следует капрон, который имеет износостой-  [c.83]

Солесодержание до 300 мг/кг а) чистая речная, озерная или оборотная вода б) содержание хлоридов более 200 мг/кг, содержание аммиака, сероводорода, нитритов и др. не более 1 мг/кг и небольшая загрязненность стоками Латунь Л68 Латунь мышьяковистая ЛМш68-0,06 или латунь оловянистая Л070-1 гост 494-52, пере-изд. 1964 г. То же До 2,0—2,2 с понижением до 1,7—1,9 при небольшом содержании тверды.ч примесей То же  [c.125]


Коррозионная стойкость нержавеющей стали выше, чем латуни. Так, нержавеющая сталь типов 18/8 и 304 обладает удовлетворительной коррозионной стойкостью в речной и морской водах при отсутствии на ее поверхности наносных отложений, накипи и продуктов обрастания. В противном случае они подвергаются язвенной коррозии, коррозионному растрескиванию и другим видам локальной коррозии, которая интенсифициру--ется содержащимися в воде хлоридами. Толщина стенок трубок из нерл авеющей стали может быть снижена до 0,71 мм по сравнению с 1,29 мм для трубок из медных сплавов.  [c.143]

Защита от коррозии конденсаторов и охладителей становится все более актуальной проблемой в связи с наблюдаемым возрастанием солесодержания и концентрации коррозионных агентов в речных и других природных водах. Эксплуатационные данные показывают, что при умеренной агрессивности охлаждающих вод, характеризующейся солесодержанием небо-,лее 200 мг/кг, ксинцентрацией хлорид-ионов не более 5 мг/кг, pH яг 7—8 и отсутствием других коррозионных агентов, скорость проникновения коррозии в глубь металла составляет 0,02— 0,06 мм/год. При равномерной коррозии, протекающей со скоростью проникновения ее в глубь металла 0,05 мм/год, и толщине стенок труб в 1,0 мм срок их службы колеблется от 10 до 20 лет. Значительно сокращается срок службы латунных  [c.146]

В последние годы борьба с коррозией конденсаторных трубок приобрела особо актуальное значение из-за существенного возрастания концентрации коррозионных агентов в речных и других поверхностных водах, используемых для охлаждения конденсаторов турбин, особенно в промышленных районах. Эксплуатационные данные показывают, что при умерениой агрессивиости охлаждающих вод, характеризующихся солесодержанием не выше 200 мг/кг, концентрацией ионов хлора не выше 5 мг/кг, показателем рН 7- 8, отсутствием агрессивных агентов, скорость проникновения коррозии в глубь металла составляет 0,02— 0,06 мм в год. Срок службы конденсаторных трубок колеблется от 10 до 20 лет. Значительное сокращение срока службы латунных трубок наступает при неравномерной коррозии всякая локализация коррозии приводит к ускорению проникновения ее в глубь металла. Так, пробочное обесцинкование латуни по этому показателю превышает примерно в 10 раз скорость равномерной коррозии.  [c.219]

Вода Дистиллированная и мягкая Колодезная и речная Конденсаторные трубы — Олово, никель, серебро, платша, алкжйвий, монель-металл, нержавеющая сталь типа 1Х18Н9Т Цинк, свинец, олово, алюминий, никель, М0 нель-металл, нержавеющая сталь, бетон Медь, латунь, бронза, медноникелевые сплавы (15—30% N1), монель-металл  [c.35]

Дяав<ётр лш Площадь попе--речного сечения мм Медь Латунь Бронза алюми-ниевомарганцо-вистая АлюминиД  [c.620]

Строгого разграничения случаев коррозии трубок конденсаторов турбин по районам страны в зависимости от источника водоохлажде-ния не получено. Однако следует считать, что при отсутствии в охлаждающей воде взвешенных веществ создаются условия для протекания ослабленной коррозии под действием вод Севера, Востока и Запада. Речные и озерные воды центральной части страны, особенно Донбасса, обладают повышенной агрессивностью и поэтому требуют применения на электростанциях улучшенных составов сплавов для конденсаторных труб (латунь ЛА-77, монель-металл и т. п.).  [c.32]

Медные сплавы. Судовые гребные винты, которые должны противостоять комбинации механического и химического воздействия (стр. 603), обыкновенно изготовляются из цветных сплавов, как например, марганцовистой бронзы, хотя употребляются и гребные винты из чугуна. Для защиты бронзы и стали, находящихся в контакте, большие куски цинка (протектора) часто прикрепляются в соответствующих местах. Цинк (который можно возобновлять) защищает более благородные металлы, но сам в то же время разрушается (см. стр. 643). Андре указывает, что гребные виеты при большем числе оборотов (если, конечно, форма винта правильная, а материал доброкачественный) не вызывают затруднений, однако в случае большого числа оборотов разрушение винта может произойти уже через несколько месяцев. Андре разбирает преимущества добавки никеля к марганцевой латуни (1—2% марганца и железа), обычно применяемой в Германии, но он все же считает, что состав сплава и значения коэфициента крепости менее существенны, чем получение доброкачественной отливки и гладкой поверхности, свободной от пор. Для обшивки портовых свай и аналогичных сооружений часто применяется мунц-металл (60/40 медноцинковая латунь). Как указано на стр. 325, этот сплав склонен к коррозии в условиях устья рек, когда пресная речная вода протекает над соленой морской водой Разрушается преимущественно Р-фаза. Но если зерна а-латуни заключены в оболочку Р-фазы, они могут выпасть во время коррозии. Донован и Перке указывают на необходимость избегать сплавов, которые нагревались до высокой температуры (700°) и быстро охлаждались, так как такие сплавы, в которых доминирует. Р-фаза, более склонны к коррозии, чем те, которые нагревались менее высоко и у которых доминирует а-фаза. В производстве существует тенденция ускорять термообработку за счет более высоких температур нагрева и более быстрого охлаждения, вследствие чего Р-фаза не успевает превратиться в а-фазу. Нагрев при промежуточной температуре (скажем, при 600°) дает сплав, в котором ни а- ни р-фаза не превалируют, и Донован и Перке полагают, что в этом состоянии латунь более химически устойчива.  [c.513]


Смотреть страницы где упоминается термин Речная латуни : [c.189]    [c.215]    [c.187]    [c.268]    [c.233]    [c.432]   
Кислородная коррозия оборудования химических производств (1985) -- [ c.52 ]



ПОИСК



ЛАТУН

Латунь

Латунь в речной воде



© 2025 Mash-xxl.info Реклама на сайте