Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Усталость композиционного материала

На рис. 6 приведена малоцикловая усталость композиционного материала алюминий — борное волокно в сравнении с малоцикловой усталостью стали и титановых сплавов.  [c.26]

Усадка композиции 124—126 Усилие размыкания формы 180 Усталость композиционного материала 282 Установка  [c.579]

Рис. 4. Сравнение кривых усталости для металлов и композиционных материалов (N—число циклов нагружения) 1 — композиционный материал 2 металл Рис. 4. <a href="/info/8110">Сравнение кривых</a> усталости для металлов и композиционных материалов (N—число циклов нагружения) 1 — <a href="/info/1547">композиционный материал</a> 2 металл

Большое внимание в настоящее время уделяется исследованию композиционных материалов алюминий — углеродное волокно, обладающих высокой прочностью и малой плотностью. Свойства этих материалов зависят от свойств упрочняющих волокон, а также в значительной степени от метода изготовления и технологических параметров. Так, например, композиционный материал, содержащий 30—40 об. % волокон, при плотности 2 г/см в зависимости от вида упрочнителя и технологии может иметь предел прочности от 50 до 120 кгс/мм [156, 170, 178]. Модуль упругости материала зависит только от величины модуля упругости применяемого волокна и может изменяться в пределах от 9000 до 20 000 кгс/мм [170]. На рис. 83 показано изменение предела прочности композиционного материала на основе алюминиевого сплава А-13 (алюминий + 13% кремния), упрочненного —30 об. % углеродного волокна. Видно, что вплоть до температуры плавления матрицы прочность заметно не меняется. Длительная (100-часовая) прочность подобного материала при 400° С составляет 15—20 кгс/мм [1]. Характеристики усталости материала алюминий — 33—38 об. % углеродного волокна приведены в табл. 47.  [c.210]

Рис. 35. Предел выносливости композиционного материала бор-сик — алюминий 6061 при цикле "l растяжение — растяжение в по-перечном направлении. Образцы А п Б были подвергнуты испы-I танию на усталость при указан-о пых напряжениях и числах цпк- лов, а затем испытаны при растяжении для определения предела прочности, показанного при 10° циклов Рис. 35. <a href="/info/1473">Предел выносливости</a> <a href="/info/1547">композиционного материала</a> бор-сик — алюминий 6061 при цикле "l растяжение — растяжение в по-перечном направлении. Образцы А п Б были подвергнуты испы-I танию на усталость при указан-о пых напряжениях и числах цпк- лов, а затем испытаны при растяжении для <a href="/info/70176">определения предела прочности</a>, показанного при 10° циклов
Предварительные оценки эффективности применения композиционных материалов по расчетным данным на основании свойств компонентов композиций по правилу аддитивности дают весьма обнадеживающие результаты. Последние показывают возможность повышения прочности примерно в 2 раза, жесткости и сопротивления усталости в 3 раза и т. д. Одиако в ряде случаев первая проверка применения указанных материалов в виде подкрепляющих элементов или простой заменой материала отдельных деталей, изготовленных по чертежам, предназначенным для аналогичных конструкций узлов из традиционных сплавов, не дает ожидаемого эффекта, т, е. не позволяет полностью раскрыть достоинства новых материалов.  [c.236]


Коррозионная стойкость на воздухе и в электролитах большинства материалов с матрицами из алюминия и магния в общем ниже, чем у гомогенных сплавов. Особенно она понижается, когда воздействию коррозионной среды подвергаются торцы материала. При этом происходит усиленное растворение матрицы вследствие ускоряющего воздействия волокон и других упрочняющих фаз, являющихся катодами. Для защиты от коррозии следует применять те же методы которые используются для обычных алюминиевых и магниевых сплавов с исключением контакта с коррозионной средой торцов материала. Коррозионностойкими материалами могут считаться композиционные материалы с матрицами на основе титана, свинца, меди. Особые преимущества могут быть достигнуты по характеристикам усталости п по торможению развития коррозионных трещин.  [c.79]

Успешная разработка и применение композиционных материалов жаропрочный сплав — тугоплавкая проволока для лопаток авиационных газовых турбин позволили достигнуть такой высокой рабочей температуры лопатки, как 1150° С, при использовании непокрытых волокон и 1260° С в случае применения волокон с покрытиями, являющимися диффузионными барьерами. Защита от окисления профиля лопаток — одно из наиболее важных требований при указанном повышении рабочих температур, особенно при использовании материала в авиации, где циклическое изменение температуры вызывает отслаивание защитной окисной пленки. Композиционные материалы могут быть также успешно использованы в наземных энергетических газовых турбинах, работающих при все возрастающих температурах. Эти установки вследствие ограниченного термоциклирования системы характеризуются ослабленной тенденцией к окислению и к термической усталости, а также уменьшенной потребностью в материалах с низкой плотностью.  [c.274]

Имеется весьма ограниченное число данных о механизмах разрушения композиционных материалов с тугоплавкими волокнами в результате окисления, усталости и эрозии. Имеющиеся сведения указывают на целесообразность проведения дальнейших исследований с целью разработки рассматриваемых композиционных систем. Отмечена необходимость в осуществлении защиты материала от окисления при температурах 1090° С и выше.  [c.274]

Рассмотренные выше экспериментальные данные по усам меди и железа показывают, что совершенные нитевидные кристаллы обладают высокой циклической прочностью. Если бы удалось сохранить эту высокую прочность усов (или других волокон) и в композиции, то имелась бы принципиальная возможность получить композиционные материалы с высокой сопротивляемостью усталости. Однако это еще только одна сторона вопроса. Вторая проблема — это изыскание подходящего материала для матрицы, которая бы в процессе циклического нагружения не наклепывалась и не разрушалась (57].  [c.193]

Определялся также предел выносливости однонаправленного боралюминия в поперечном направлении. На рис. 35 приведены данные по малоцикловой усталости композиционного материала борсик — алюминий. Как и в случае описанных ранее результатов испытания при растяжении, на поверхности разрушения образцов материала, упрочненного волокном борсик диаметром 100 мкм, после определения предела выносливости в поперечном направлении, было много волокон, расщепленных вдоль, у мате-  [c.486]

Установлено, что модули динамического изгиба остаются высокими при повышенных температурах. Нанример, композиционный материал с 30 об. % волокна, имевший при комнатной температуре модуль упругости 32 10 фунт/кв. дюйм (22 498 кгс/мм ), сохранял значение 29 10 фунт/кв. дюйм (20 389 кгс/мм ) при 1200° F (649° С). Методом резонирующей консольной балки было определено сопротивление усталости. Композиционные материалы по сравнению с матрицей обнаружили тенденцию к некоторому понижению сонротивления усталости в принятых условиях испытания. Было высказано нредполоя ение, что вклад в наблюдаемый эффект вносит несколько факторов. Наиболее важным среди них считали эффект надреза, вызываемый свободными волокнами на поверхности. В число предполагаемых факторов включены также измененное состояние матрицы из-за наличия кислорода и предпочтительной ориентации и остаточные напряжения. По-видимому, контролирующим фактором является деформация матрицы.  [c.312]


В работе [143] поверхностное легирование использовали для повышения статической и циклической прочности промышленного поликристаллического молибдена марки МЧ (плоские образцы толпщной 1 мм). На образцы молибдена (состояние поставки) на установке ВЭУ-120 (мош,ность 5 Квт) методом электронно-лучевого напыления наносили слой рения или никеля. После напыления рения проводили диффузионный отжиг в вакууме при температуре 1400 °С в течение 10 ч. В этом случае был получен композиционный материал с приповерхностным слоем переменного состава Re-Mo глубиной 8-10 мкм. Никель напылялся на рекристаллизованные образцы, а после напыления образцы отжигались в вакууме (900 С, 10 ч). Глубина диффузионного слоя в этом случае составляла 4 мкм. На рис. 5.21 представлены кривые статического растяжения и усталости образцов из молибдена в исходном состоянии и после поверхностного легирования. Некоторое улучшение пластичности при статических испытаниях на растяжение и повышение уровня предела выносливости в случае покрытия никелем, по-видимому, связано с большей пластичностью никеля по сравнению с молибденом, что приводит к пластифицирующему эффекту. Диффундируя в объем металла и располагаясь преимущественно вдоль границ зерен, никель участвует в образовании межзеренных прослоек, являющихся раствором молибдена в никеле. Эти прослойки оказывают упрочняющее влияние на границы зерен молибдена.  [c.191]

ИЦИ0ННЫХ материалов (за исключением стеклопластиков) находился в эксплуатации в течение длительного времени. Существует реальная возможность того, что свойства элементов, работающих при высоких напряжениях, могут не сохраниться на уровне исходных показателей. Вопрос не просто в том, будут ли наблюдаться явления усталости волокон, разрушения связи по границе раздела или возникать другие дефекты, снижающие прочность и выносливость материала. Практически всем материалам присуща определенная специфика поведения в условиях эксплуатации и окружающей среды. Однако дефектность материалов, применяемых в течение длительного времени, достаточно хорошо изучена, в связи с чем конструктора и технологи остаются верны им, используя надежные методы контроля. Иное положение с новейшими композиционными материалами, для которых подобные сведения и подход отсутствуют. Только опыт, накопленный в течение многих лет эксплуатации, обеспечит необходимое доверие. Основа этого должна быть заложена благодаря проектированию, изготовлению и испытаниям агрегатов в эксплуатационных условиях и поддержана многочисленными лабораторными наземными ресурсными испытаниями.  [c.65]

Наиболее интересными с практической точки зрения являются исследования, в которых определяются условия увеличения долговечности деталей в результате уменьшения скорости роста усталостных трещин. Увеличение прочностных и пластических характеристик материала (ств, стт, i ), уменьшение размера структурных составляющих, увеличение коэффициента асимметрии цикла нагружения, уменьшение жесткости двухосного напряженного состояния, понижение температуры испытания и наличие вакуума — вот далеко не полный перечень факторов, приводящих к уменьшению скорости роста трещины. Увеличение сопротивления усталости, связанное с затруднением роста трещины, происходит и при упрочнении границ зерен дробной механотермической обработкой, и при взрывном упрочнении, приводящем к замораживанию дислокаций [8]. Торможения развития трещин добиваются также применением композиционных материалов, в которых трещина либо вязнет в мягких слоях, либо не может разрушить более прочные армирующие волокна.  [c.7]

Путем построения структурной модели композищюнного материала, содержащего квазихрупкие компоненты и пористые границы между ними, и имитации взакмодействия микротрещин с границами раздела (разд. 4) исследуется кинетика накопления усталостных повреждений и прогнозируются кривые усталости слоистых композиционных материалов (разд. 5).  [c.208]


Смотреть страницы где упоминается термин Усталость композиционного материала : [c.272]    [c.486]    [c.4]    [c.97]   
Справочник по композиционным материалам Книга 2 (1988) -- [ c.282 ]



ПОИСК



Композиционные материалы

Усталость

Усталость материалов



© 2025 Mash-xxl.info Реклама на сайте