Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Модели Ортотропное тело 36 - Ортотропный

Многие композиционные материалы могут быть описаны моделью ортотропного тела, которая определяется девятью упругими постоянными.  [c.270]

В книге использованы простейшие модели, описывающие свойства материалов. В разделе теории упругости это была модель линейно-упругого сплошного и однородного тела. Вопросы пластичности также рассматривались применительно к простейшим моделям пластического деформирования, а в явлении ползучести мы вынуждены были ограничиться лишь линейной ползучестью. В то же время, например, новые композитные материалы иногда не могут быть описаны с помощью рассмотренной выше модели ортотропного материала и требуют привлечения общей теории анизотропных тел, физические свойства которых описываются соответствующими тензорами параметров упругости.  [c.389]


Надлежащий выбор системы координат позволяет существенно упростить исходные матрицы податливости и жесткости, если материал обладает симметрией упругих свойств. Рассмотрим, например, композиционный материал, состоящий из упругого связующего, регулярно армированного в одном направлении упругими волокнами (рис. 1.2). Для описания деформационных свойств такого материала можно воспользоваться моделью однородного анизотропного упругого тела. В произвольно ориентированной системе координат матрица податливости (и жесткости) будет целиком заполненной, а число подлежащих определению независимых коэффициентов не ясным. В системе координат (Xi, х , х ) плоскость (х , Xs) можно считать плоскостью упругой симметрии матрица коэффициентов податливости в этом случае будет иметь структуру (1.11). Еще более полно симметрия упругих свойств рассматриваемого материала выявляется в системе координат (х1, хг, Xj) плоскость х, Хг) тоже можно считать плоскостью упругой симметрии. Следовательно, теперь все координатные плоскости — плоскости упругой симметрии, материал является ортотропным и матрица коэффициентов податливости имеет структуру (1.12). Более того, при равномерном распределении армирующих волокон допустимо считать, что упругие свойства во всех направлениях в плоскости (x l, Хз) идентичны. Теперь становится ясным, что рассматриваемый материал является трансверсально изотропным, матрицы его коэффициентов податливости имеют вид  [c.13]

При рассмотрении механики поведения композита в функции времени можно использовать модель, содержащую линейную жесткость, элемент вязкого трения, элемент трения при скольжении и др. Используя такую модель, можно объяснить процесс деформирования композита при высоких скоростях нагружения, при ползучести или колебаниях. В большинстве случаев при построении этих моделей рассматривают поведение материала при одномерной деформации. В настоящее время необходимо рассматривать уже двумерные и трехмерные случаи. Используя обобщенный закон Гука для двумерных ортотропных тел, Холпин [5.36] установил  [c.134]

Чен [49] провел интересное исследование сопротивления, испытываемого искривленной и удлиненной малой частицей, основываясь на методе Бюргерса возмущений скорости. В качестве модели он выбрал формы, изменяющиеся от прямого эллипсоида до таких, которые получены изгибом эллипсоида в дугу круга, включая полуокружность и как предельный случай круглое кольцо. В табл. 5.11.2 даны величины сопротивлений, полученные для течения в направлениях х, у, z (рис. 5.11.2). В статье приведены также результаты тангенциального и радиального течений относительно частиц. Здесь I — длина частицы, — максимальный радиус. Отметим, что формулы для сопротивления прямого эллипсоида позволяют проверить формулы Обербека, обсуждаемые выше. Хотя полуокружность не является ортотропным телом, ее сопротивление течению в плоскости ху не зависит от ориентации.  [c.267]


Описание механических свойств композитных материалов, которые могут обладать весьма высокой прочностью (особенно статической и ударной), можно производить двумя путями. В первом случае композитные материалы рассматриваются как квазиодно-родные (гомогенные), обладающие в случае объемного дисперсного армирования изотропией деформационных и прочностных свойств, а в случае армирования волокнами, плоскими сетками или тканями — определенного типа анизотропией. Обычно применяют модели ортотропного или трансверсально-изотропного тела. При таком подходе речь идет о механических характеристиках, осред-ненных в достаточно больших объемах, содержащих много однотипных армирующих элементов. Другой, несравненно более сложный, но и более информативный путь состоит в раздельном рассмотрении механических свойств каждой фазы с последующим теоретическим прогнозированием свойств всего композита в целом. При этом приходится рассматривать фактически еще одну дополнительную фазу зоны сопряжения основных фаз, например, матрицы с армирующими волокнами. Механизм повреждений, развивающихся на границах фаз, обычно весьма сложен и определяется помимо свойств основных компонентов гетерогенной системы еще рядом дополнительных факторов, таких как адгезия фаз, технологические и температурные местные напряжения, обычно возникающие вблизи границ, наличие дефектов и др. Границы фаз как зоны концентраций напряжений играют особенно важную роль в развитии много- и малоцикловых усталостных повреждений композитов.  [c.37]


Смотреть страницы где упоминается термин Модели Ортотропное тело 36 - Ортотропный : [c.292]    [c.101]   
Машиностроение Энциклопедия Т I-3 Кн 2 (1995) -- [ c.0 ]



ПОИСК



Тело ортотропное



© 2025 Mash-xxl.info Реклама на сайте