Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Система гетерогенная индивидуальная

Очевидно, что части, выделяемые в сложной системе, должны сохранять в ней свою индивидуальность, так как только при этом условии jix термодинамические функции могут быть изучены отдельно от системы и только в этом случае возможно конструировать различные сложные системы, располагая свойствами ограниченного набора составных частей. Таким требованиям полностью удовлетворяют фазы гетерогенной смеси, так что модель гетерогенной системы, не учитывающая поверх-  [c.168]


Все реакции и соотношения, относящиеся к химическому равновесию, рассматривались здесь применительно к гомогенным газовым системам. Условия термодинамического равновесия гетерогенной системы с одним компонентом рассматривались в 12. Большое практическое значение имеют многокомпонентные гетерогенные системы, для которых условия термодинамического равновесия устанавливаются с помощью правила фаз Гиббса. Это правило позволяет определить число произвольно изменяемых параметров (число степеней свободы), исходя из числа компонентов и числа фаз в системе. Число компонентов равно числу химически индивидуальных веществ минус число химических реакций между ними. Определение фазы было дано в 12 при невысоких давлениях возможна лишь одна газовая фаза в системе, но количество твердых и жидких фаз не ограничивается существует, например, несколько кристаллических модификаций твердых тел (льда, серы, железа), в системе могут быть несмешивающиеся жидкости, каждая из которых является фазой.  [c.258]

Каждый из твердых компонентов такой гетерогенной системы характеризуется своей индивидуальной растворимостью. Поэтому IB каждом конкретном случае необходимо располагать данными о составе равновесной с паром твердой фазы. Эти данные могут быть получены на основе известных закономерностей. В гетерогенных реакциях термического разложения два компо,нента из трех находятся в конденсированном (твердом) состоянии и поэтому константы равновесия численно равны парциальным давлениям газообразного компонента. Так, для  [c.94]

Дисперсными будем считать гетерогенные системы, состоящие из псевдосплошной дисперсионной среды (компонентов, фаз) и дискретной дисперсной среды (компонентов, фаз), отделенных друг от друга развитой поверхностью раздела. Компоненты—химически индивидуальные вещества, а фазы — однородные части системы, находящиеся в различном агрегатном состоянии. Подчеркнем, что дисперсионная среда — псевдо-сплошная вследствие макроразрывов ее непрерывности дисперсными частицами, а дисперсная среда — макро-дискретная (dis retus — разделенный, прерывистый).  [c.9]

Особые преимущества такого подхода проявляются при расчетах равновесий в сложных системах, которые состоят из частей с различающимися термодинамическими свойствами. Это могут быть как макроскопические части — фазы гетерогенной смеси, так и элементы микроструктуры отдельных фаз атомы, молекулы, ионы, комплексы и любые другие индивидуальные формы существования веществ, если они рассматриваются как структурные составляющие фазы. Например, газообразный диоксид углерода может считаться сложной системой как при низких температурах и больших давлениях, когда возможны его конденсация и появление твердой фазы, так и при высоких температурах и низких давлениях, если с целью теоретического анализа свойств газа в нем выделены составляющие, такие как СОа, 02 СО, С0 О2, О2+, Оа О, 0 О, С, С С2, 2 z, Сз, С4, Сй, ё. Равновесия в подобных сложных системах, состоящих нередко из десятков фаз и сотен составляющих, рассчитывают почти исключительно численными методами. При этом, как правило, термодинамические расчеты являются частью более общего теоретического анализа проблемы и практическое значение имеют не термодинамические свойства непос-  [c.166]


В качестве объектов для дальнейшего изучения будем рассматривать материальные среды, состоящие из одной или нескольких фаз. Каждая фаза—зто часть системы, ижющая четко выра-лсенные границы. Однофазные системы принято называть гомогенными, а многофазные — гетерогенными. В зависимости от агрегатного состояния различают газообразные и конденсированные фазы. Каждая из них состоит из отдельных компонентов. В дальнейшем считается, что компонентами фаз являются индивидуальные вещества—химические соединения, находящиеся в газообразном либо конденсированном состоянии, ижющие кратное число образующих их атомов и характеризуемые определенной степенью (кратностью) ионизации.  [c.158]

Следовательно, результатом смешения А и В является образование твердог раствора термодинамически более стабильной системы, чем исходная гетерогенная система, представленная чистыми компонентами. Однако сам факт понижения общей энергии системы здесь не имеет решающего значения, так как при анодном растворении (коррозии) с электролитом взаимодействует не фаза как таковая, а совокупность атомов того или другого компонента. Поэтому при термодинамическом рассмотрении процесса селективной коррозии важнее иметь сведения, об индивидуальных (парциальных) состояниях компонентов в сплаве, а не об общей стабильности самой фазы.  [c.12]

Несмотря на то что в гетерогенных системах каждый компонент представляет индивидуальную фазу, их коррозионное поведение не может быть сведено к простому (независимому) сочетанию анодно-катодных свойств этих фаз. Иными словами, анализ коррозионного разрушения гетерр-генных сплавов на основе теории микроэлементов, исходящей из положения о независимости реакций на отдельных фазах, является слишком грубым и не может быть положен в основу систематизации опытных данных. Этот подход оказывается тем более непригодным, когда гетерогенный сплав состоит из компонентов, мало отличающихся по своим собственным потенциалам коррозии, или когда- СР сплава приводит к появлению устойчивого поверхностного пористого слоя, построенного из электроположительного компонента [27, 28, 144, 147, 148].  [c.157]

Выполненные модельные расчеты [70-74] подтвердили справедливость макротермодинамической модели. Предложено и обосновано приближенное уравнение, связывающее изменение функции Гиббса при неравновесных фазовых переходах вещества с температурами их плавления и кипения. Установлено, что уравнение и соответствующие корреляции хорошо выполняются в сравнительно широких температурных интервалах для веществ с близкими значениями измененной энтропии при плавлении и испарении. Уравнение по форме соответствует уравнению Гиббса-Гельмгольца и в предельном случае преобразуется в него. На основании рассмотренного в [68] подходе показана возможность применять термодинамику к открытым иерархическим гетерогенным биологическим и другим природным системам для предсказания термодинамической направленности и степени протекания процессов. Показано, что для различных химических соединений с температурой плавления Т ,< 100°С и конденсирующихся при температуре близкой к 25°С уравнение для неравновесного фазового перехода - самосборки индивидуального вещества можно представить в виде  [c.37]

Рассмотрим задачу об эффективной проводимости гетерогенной Л-компонентной композитной системы, т. е. предположим, что пространство делится на подобласти, внутри которъ1х =сопз1( = 1,2,. .., Н). Выделим одну из подобластей—элемент неоднородности и рассмотрим поле внутри ее. Очевидно, это поле в основном зависит от таких факторов, как величина а в подобласти, формы ее границы, значений о для ближайших индивидуальных подобластей — элементов, лежащих в пограничном слое , среднего поля для всей системы, принимаемого постоянным, и эффективной проводимости всей системы а. Приближение метода самосогласования заключается в пренебрежении пограничным слоем и рассмотрении поля в подобласти, окруженной эффективной средой, параметры которой пока неизвестны. Для их определения используется условие равенства среднего поля в подобластях заданному среднему полю для всей системы.  [c.138]


Смотреть страницы где упоминается термин Система гетерогенная индивидуальная : [c.19]    [c.19]   
Парогенераторные установки электростанций (1968) -- [ c.51 ]



ПОИСК



64 — индивидуальные

Система гетерогенная



© 2025 Mash-xxl.info Реклама на сайте