Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Единицы измерения Система электрические

Объектами государственной стандартизации являются общетехнические и организационно-методические правила и нормы (например, ряды номинальных частот и. напряжений электрического тока, допуски и посадки, резьбы, предпочтительные числа, нормы точности зубчатых передач и др.) научно-технические термины и обозначения единицы измерений и эталоны единиц измерений системы нормативно-технической, конструкторской, технологической, эксплуатационной и ремонтной документации, документации в области организации и управления производством и др.  [c.47]


Основными единицами новой системы являются метр (м) — единица измерения длины килограмм (кг) — единица измерения массы секунда сек) — единица измерения времени ампер (а) — единица измерения силы электрического тока градус Кельвина (°К) — единица измерения термодинамической температуры  [c.619]

Приблизительно с середины 19 в. быстрый рост мировой торговли в сочетании с появлением все более сложной техники привели к идее о необходимости, международного соглашения о мерах и весах и единицах измерений. В Великобритании и континентальной Европе были предприняты усилия, направленные на установление единства измерений. Британская ассоциация развития науки (БАРН) первой проявила инициативу в области электрических измерений, а Международная геофизическая ассоциация на своей 2-й Генеральной конференции в Берлине в 1867 г. выдвинула предложения об унификации измерений длины в Европе. Одно из предложений предусматривало организацию европейского Бюро мер и весов. К этому времени необходимость в единой системе мер стала насущной и метрическая система, уже применявшаяся в ряде стран Европы, была по существу единственным серьезным кандидатом. На всемирных выставках в Лондоне в 1851 и 1862 гг. и в Париже в 1855 и 1867 гг. выдвигались различные предложения о формах международного сотрудничества в области мер и весов. Наконец, в 1869 г. в соответствии с рекомендациями Международной геофизической ассоциации, поддержанными Академиями наук Петербурга и Парижа, а также французским Бюро долгот, правительство Франции предложило организовать Комиссию для выработки соглашения о принятии метрической системы в качестве международной. Приглашение  [c.37]

Для измерения концентрации дискретной фазы в смеси применялись различные методы электрический — при исследовании аэрозолей [335] оптический метод регистрации рассеяния света [656] — при суммарных измерениях на больших образцах и при относительно малом числе частиц в единице объема системы регистрации с помощью счетчика соударений частиц [741] и с помощью датчиков в отдельных точках [830] — при сравнительно большом размере частиц, а также при малом содержании твердой фазы. С помощью последних методов исследуется скорее локальный поток массы, чем концентрация.  [c.181]

Международная система единиц по ГОСТ 9867—61 введена с 1 января 1963 г. Эта система связывает единицы измерения механических, тепловых, электрических, магнитных и других величин. В Международной системе единиц приняты шесть основных единиц — метр, килограмм, секунда, ампер, кельвин, моль, кандела две дополнительные единицы — радиан и стерадиан и 25 важнейших производных единиц (табл. 1-1). Более полные данные fo единицах Международной системы,применении единиц других систем и внесистемных единиц приведены в ГОСТ по отдельным видам измерений ГОСТ 7664—61 Механические единицы , ГОСТ 8550—61 Тепловые единицы , ГОСТ 8033—56 Электрические и магнитные единицы , ГОСТ 7932—56 Световые единицы , ГОСТ 8849—58 Акустические единицы .  [c.5]


В однородных изотропных проводниках плотность электрического тока j в данной точке связана с напряжённостью электрич. поля в той же точке Ома законом j= sE, постоянный коэф. пропорциональности а наз. Э. или уд. Э., или проводимостью. Единицей измерения Э. в СИ служит Ом -м в физике чаще используется Ом см в системе СГСЭ и в Гаусса системе единиц Э. имеет размерность, обратную времени, и единицей Э. является с (1 Ом м =9 10 с" ).  [c.589]

Международная система СИ считается наиболее совершенной и универсальной по сравнению с предшествовавшими ей. Кроме основных единиц, в системе СИ есть дополнительные единицы для измерения плоского и телесного углов — радиан и стерадиан соответственно, а также большое количество производных единиц пространства и времени, механических величин, электрических и магнитных величин, тепловых, световых и акустических величин, а также ионизирующих излучений.  [c.496]

В системе СИ в качестве основных (базисных) единиц измерения выбраны единицы длины, массы, времени, термодинамической температуры, количества вещества, силы электрического тока и силы света.  [c.5]

В 1948 г. Международный союз чистой и прикладной физики обратился в Международный комитет мер и весов с просьбой принять для международных связей практическую систему единиц и рекомендовать для этой цели систему МКС и одну электрическую единицу из абсолютной практической системы. Одновременно французское правительство по предложению Национального научного и постоянного бюро мер и весов представило IX Генеральной конференции по мерам и весам проект международной унификации единиц измерений. Основными положениями проекта являлись следующие.  [c.13]

Рассмотрим два геометрически подобных тела, наделенных различными физическими и механическими свойствами массой, скоростью, упругостью, вязкостью, теплопроводностью, электрическим сопротивлением и т. д. Каждое из указанных свойств может быть определено одним или несколькими параметрами и измерено в выбранной системе единиц измерения.  [c.34]

МЕЖДУНАРОДНАЯ СИСТЕМА ЕДИНИЦ В ПРАКТИКЕ ЭЛЕКТРИЧЕСКИХ И МАГНИТНЫХ ИЗМЕРЕНИЙ  [c.85]

В период с 1936 по 1938 гг. работа по единицам была сосредоточена в Комиссии по единицам мер при группе технической физики отделения технических наук Академии наук СССР. Комиссия рассмотрела вопрос о системах единиц физических величин и приняла ряд рекомендаций. Хотя работа комиссии и не завершилась изданием новых нормативных документов, она сыграла важную роль в подготовке изданных позднее Положения об электрических и магнитных единицах, Положения о световых единицах и новых стандартов на единицы измерений физических величин.  [c.13]

Согласно системе СИ основными единицами измерения электромагнитных величин являются метр, килограмм, секунда и ампер. Построенная на этих единицах система электромагнитных величин называется МКСА (см. табл. 1.18 на стр. 19). Систему единиц МКСА обычно применяют при написании уравнений электромагнитного поля в рационализированной форме. Рационализация уравнений электромагнитного поля имеет своей целью исключение множителя 4я из наиболее важных и часто применяемых уравнений. В системе МКСА при рационализированной форме уравнений электромагнитного поля электрическая е и магнитная Цо постоянные принимаются равными  [c.21]

Обозначения и единицы измерения электрических и магнитных величин в системе СИ  [c.107]

Международная система единиц измерения физических величин - универсальная система, связывающая воедино единицы измерения механических, тепловых, электрических, магнитных и других величин.  [c.144]

Способность элемента системы накапливать тепло характеризуется произведением массы элемента на его удельную теплоемкость и обычно измеряется в килокалориях, деленных на градус Цельсия. Способность элемента накапливать массу может быть выражена при помощи различных единиц измерения, например в кубических метрах жидкости на метр высоты резервуара и т. д. Подобные емкости аналогичны электрическим емкостям, однако следует подчеркнуть, что их величина определяется скоростью измерения энергии или массы [см. уравнение (3-1)], в то время как величина электрической емкости обычно определяется отношением величины полного заряда к напряжению. Величина электрической емкости обычно не зависит от напряжения. Величины емкостей, аккумулирующих тепло либо массу, часто зависят от 0 и не могут быть подсчитаны по величине отношения Q/Q.  [c.37]


Эта система единиц впервые была установлена в 1919 г. во Франции, где была принята в законоположении о единицах измерений. В 1927—1933 гг. система МТС была рекомендована советски.ми стандартами на механические единицы. Выбор тонны в качестве основной единицы. массы казался удачным, так как достигалось соответствие между единицами длины и объема, с одной стороны, и единицей массы — с другой (с точностью, достаточной для большинства технических расчетов, 1 т соответствует. массе 1 м воды). Кроме того, единица работы и энергии в этой системе (килоджоуль) и единица мощности (киловатт) совпадали с соответствующими кратными практическими электрическими единицами.  [c.30]

Говоря об электрических единицах, следует еще сказать, что в период 1908—1948 гг.-в области электрических измерений широкое распространение имела так называемая система международных практических электрических единиц [9]. В СССР она была введена в 1919 г. и отменена в 1948 г. Введение этой системы являлось временной мерой оно было вызвано большими экспериментальными трудностями в изготовлении эталонов, точно воспроизводящих теоретически установленные электрические единицы (последние до 1948 г, принято было называть абсолютными). Система международных электрических единиц была построена на условных эталонах ома и ампера, которые проще воспроизводятся, чем абсолютные единицы. Таким образом, в период 1908—1948 гг. существовали две системы электрических единиц соотношение между одноименными величинами этих систем несколько изменялось по мере увеличения точности воспроизведения абсолютных электрических единиц.  [c.181]

СИ предусматривает установление единообразия в единицах измерения и содержит шесть основных единиц и две дополнительные. Эта система охватывает измерения всевозможных величин механических, тепловых, электрических, магнитных, световых, акустических.  [c.5]

Международная система единиц СИ (81) содержит семь основных и две дополнительные единицы. Основные единицы длина — метр (м) масса — килограмм (кг) время — секунда (с) сила электрического тока — ампер (А) термодинамическая температура — Кельвин (К) сила света — кандела (кд) количество вещества — моль (моль). Дополнительные единицы приняты для измерения плоского угла — радиан (рад) и телесного угла — стерадиан (ср). Производные единицы Международной системы образуются на основании определений физических величин или законов, устанавливающих связь между физическими величинами, например сила — Ньютон (Н = кг-м/с ), угловая скорость (рад/с), ускорение (м/с ).  [c.10]

В состав Международной системы единиц входят шесть основных единиц —метр, килограмм, секунда, ампер, градус Кельвина и свеча, две дополнительных и двадцать семь важнейших производных единиц из различных областей науки. Все основные и большинство производных единиц Международной системы давно известны и получили широкое распространение. В системе СИ четко разграничены единицы массы (килограмм) и силы (ньютон). Измерение механической, тепловой и электрической энергии производится одной универсальной единицей — джоуль.  [c.5]

Для электрических и магнитных величин ГОСТ 8033—61 предусматривает преимущественное ирименение рацио-нализованнох" мютемы единиц МКСА с четырьмя основными единицами измерения метр — килограмм — секунда —амнер. Все единицы полностью совпадают с единицами измерения однородных электрических и магнитных величин в Международной системе единиц.  [c.104]

На раннем этапе деятельности МЭК основное внимание уделялось разработке международных нормативно-технических документов на изделия сильно-точной техники и общетехнических стандартов (терминология, системы единиц, графические обозначения и т. п.). Отработанная МЭК система единиц была в последующем положена в основу электрических единиц системы СИ. В период между первой и второй мировыми войнами МЭК разработано 25 рекомендаций по единицам измерения, графическим обозначениям для схем сильточной аппаратуры, высоковольтной коммутационной аппаратуре, цоколям и патронам, осветительных ламп и т. п. Первое издание международного электротехнического словаря (1938 г.) содержало определения 1800 терминов на восьми языках.  [c.163]

Указанные единицы совпадают с единицами, введенными соответствующими государственными стандартами а) для механических единиц (ГОСТ 7664—61) — метр-килограмм-секунда (система МКС) б) для тепловых единиц (ГОСТ 8550—61) — метр-килограмм-секунда-градус Кельвина (система МКСГ) в) для электрических и магнитных единиц (ГОСТ 8033—56 ) — метр-килограмм-секунда-ампер (система МКСА) г) для световых единиц (ГОСТ 7932—56) —. метр-секунда-свеча (система МСС). Образование кратных и дольных единиц измерения производится в соответствии с ГОСТ 7663—55.  [c.518]

В ГОСТ 8033—56 на электрические и магнитные единицы регламентировано применение двух систем единиц, В качестве основной принята абсолютная практическая система единиц МКСА с четырьмя основными единицами (метр, килограмм, секунда, ампер). Допускается также применять для электрических и магнитных измерений абсолютную систему СГС (симметричную). Преимущества системы МКСА состоят в том, что размеры ее единиц удобны для практики, кроме того, единицы образуют одну общую сиетему для измерений механических, электрических и магнитных величин. В этой системе сохранены все общепринятые практические электромагнитные единицы (ампер, вольт, ом, кулон, фарада, генри, вебер). Система МКСА установлена для рационализованной формы уравнений электромагнитного поля. Рационализация уравнений электромагнитного поля исключает множитель 4я из наиболее важных и часто применяемых уравнений. В стандарте даны таблицы основных и производных единиц системы МКСА и соотношения между единицами СГС и МКСА. Стандартом допускается применение широко распространенной в атомной физике внесистемной единицы энергии—электрон-вольта, а также кратных единиц—килоэлектронвольта и мегаэлектрон-вольта.  [c.16]


Чечурина Е. Н. Международная система единиц в практике электрических и магнитных измерений. Измерительная техника , 1964, АГ 10.  [c.63]

Лит. ГОСТ 9867—61. Международная система единиц ГОСТ 7663—55. ОЗразование кратных и дольных единиц измерений ГОСТ 7664—61. Механические единицы ГОСТ 8033—56. Электрические и магнитные единнцы ГОСТ 8550—61. Тепловые единицы ГОСТ 7932—56. Световые единицы ГОСТ 8849—63. Акустические единицы ГОСТ 8848—63. Единицы радиоактивности и ионизирующих излучений Б у р-д у н Г. Д., Единицы физических величин, 3 изд., М., 1963 Единицы измерешга н обо.значе шя фи-зи-  [c.494]

Международная система единиц измерений физических величин—единая универсальная система. Она свя-зызает единицы измерения механических, тепловых, электрических, магнитных и других величин. В состав системы входят шесть основных единиц (метр, килограмм, секунда, ампер, градус Кельвина, свеча), две дополнительные (радиан и стерадиан) и 27 важнейших производных единиц из различных областей науки (табл. 1.1). В государственных стандартах СССР применяется понятие размера единицы, являющегося количественной мерой физической величины, содержащейся в единице измерения. Размер производных единиц определяется законами, связывающими физические величины, и выражен через размер основных или других производных единиц. Например, единица силы ньютон (н) установлена на основе второго закона Ньютона она равна силе, которая сообщает ускорение 1 м сек массе I кг. При выборе размера соблюдается в основном условие когерентности (связности) системы в уравнениях, определяющих единицы измерения производных величин, коэффициент пропорциональности должен быть величиной безразмерной и равен единице.  [c.9]

В табл. 1.18 приведены единицы измерения электрических и магнитных величин в четырех системах МКСА, СГСЭ, СГСМ, СГС. Соотношения между единицами электромагнитных величии различных систем приводятся в табл. 1.19.  [c.21]

Как сказано было выше, электростатика и магнитостатика излагались независимо друг от друга. За ними обычно шли законы постоянного тока, и лишь в конце появлялись магнитное действие тока (обычно в виде действия на магнитную стрелку), электромагнитная индукция и т.д. Такой порядок изложения создавал трудности для понимания существа явлений, приводил к путанице основных понятий. В особенности это проявлялось в вопросе о системах единиц. Построенные независимо друг от друга, единицы электрических и магнитных величин образовывали две группы, обе находящиеся в рамках системы СГС. Эти группы не вступали бы друг с другом в противоречие, если бы не существовало магнитного поля тока. Благодаря наличию последнего сила тока входит не только в определяющее соотношение (7.2), но и в выражения для действия тока на магнитную стрелку или для взаимодействия токов. Поскольку в этих выражениях для всех остальных величин существовали ранее установленные единицы СГС, то определялась единица силы тока, отличная от единицы, основанной на формуле (7.2), при измерении заряда электростатическими единицами. Таким образом возникли две СГС системы электрических и магнитных величин — электростатическая (СГСЭ) и электромагнитная (СГСМ), о построении которых сказано будет ниже.  [c.185]

Кроме систем преимущественного применения, действующими стандартами на единицы измерений допускается также применение системы СГС для измерения механических и акустических величин и СГСС — для электрических и магнитных величин (ГОСТы 7664—61, 8849—58 и 8033—56)  [c.285]

Абсолютная практическая система электрических единиц была установлена в 1881 г. первым Международным конгрессом электриков в качестве производной от системы СГСМ и предназначалась для практических измерений в связи с тем, что электрические и магнитные единицы системы СГС оказались неудобными для практики (одни слишком велики, другие слишком малы). В абсолютной практической системе электрические и. магнитные единицы были образованы из соответствующих единиц абсолютной электромагнитной системы СГСМ путем умножения и.х на соответствующие степени числа 10.  [c.31]

Следует особо подчеркнуть, что большинство единиц Международной системы (СИ) не являются новыми для Советского Союза. Официально принятые в СССР государственными стандартами системы механнческнх единиц МКС, электрических и магнитных единиц МКСА, тепловых единиц МКСГ, световых единиц МСС, акустических единиц МКС содержат единицы измерения, полностью совпадающие с единицами измерения однородных величин системы СИ.  [c.4]

В период с 1927 по 1934 г. Комитетом по стандартизации при Совете Труда и Обороны были утверждены первые стандарты на метрические меры, на механические, электрические, магнитные, тепловые, световые, акустические единицы, единицы рентгеновского излучения, радиоактивности, давления, частоты и времени. Международную температурнл ю шкалу и др. Основным недостатком утвержденных И стандартов на единицы измерения было то, что одни стандарты основывались на системе МТС (метр — тонна — секунда), а другие — на системе СГС  [c.13]

Иреимуществамп системы МКСА являются удобные для практики размеры единиц единство системы для измерения механических, электрических и магнитных величин сохранение в этой системе всех общепринятых практических электромагнитных единиц (ампер, вольт, ом, кулон, фарада, генри, вебер).  [c.64]

Здесь и далее даны единицы измерения электрических п магнитных величин в системах СИ н Л1КСА.  [c.115]

Экспозиционная доза рентгеновского и гамма-излучений — доза излучения, при которой соп])яженная корпускулярная эмиссия на един1щу массы пли единицу объема сухого атмосферного воздуха производит в воздухе ионы, несущие электрический заряд каждого знака. Единицы измерения кулон па килограмм (к/кг) в системах СИ и М КСА п внесистемная единица рентген >).  [c.123]


Смотреть страницы где упоминается термин Единицы измерения Система электрические : [c.4]    [c.62]    [c.13]    [c.15]    [c.15]    [c.337]    [c.8]    [c.5]    [c.325]    [c.5]    [c.14]   
Справочник металлиста Том 1 Изд.2 (1965) -- [ c.19 , c.21 ]



ПОИСК



224 — Единицы измерени

Единица системы единиц

Единицы измерения

Единицы измерения электрические

Система единиц

Система единиц измерения (СИ)

Система измерений

Электрическая система

Электрические единицы

Электрические измерения



© 2025 Mash-xxl.info Реклама на сайте